cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A346509 Number of positive integers with n digits that are the product of two integers greater than 1 and ending with 1.

Original entry on oeis.org

0, 0, 12, 200, 2660, 31850, 361985, 3982799, 42914655, 455727689, 4788989458, 49930700093, 517443017072, 5336861879564
Offset: 1

Views

Author

Stefano Spezia, Jul 21 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A346507.

Crossrefs

Cf. A017281, A052268, A087630, A337855 (ending with 5), A337856 (ending with 6), A346507.

Programs

  • PARI
    a(n) = {my(res = 0); forstep(i = 10^(n-1) + 1, 10^n, 10, f = factor(i); if(bigomega(f) == 1, next); d = divisors(f); for(j = 2, (#d~ + 1)>>1, if(d[j]%10 == 1 && d[#d + 1 - j]%10 == 1, res++; next(2) ) ) ); res } \\ David A. Corneth, Jul 22 2021
  • Python
    def A346507upto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10)))
    def a(n): return len(A346507upto(10**n)) - len(A346507upto(10**(n-1)))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Jul 22 2021
    

Formula

Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(6)-a(9) from Michael S. Branicky, Jul 22 2021
a(10) from David A. Corneth, Jul 22 2021
a(11) from Michael S. Branicky, Jul 23 2021
a(11) corrected and extended with a(12) by Martin Ehrenstein, Aug 03 2021
a(13)-a(14) from Martin Ehrenstein, Aug 05 2021

A073505 Number of primes == 1 (mod 10) less than 10^n.

Original entry on oeis.org

0, 5, 40, 306, 2387, 19617, 166104, 1440298, 12711386, 113761519, 1029517130, 9401960980, 86516370000
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 14 2002

Keywords

Comments

Also Pi(n,5,1)
This and the related sequences A073505-A073517 and A006880, A073548-A073565 are included because there is interest in the distribution of primes by their initial or final digits.

Examples

			a(2) = 5 because there are 5 primes == 1 (mod 10) less than 10^2. They are 11, 31, 41, 61 and 71.
		

Crossrefs

Programs

  • Mathematica
    c = 0; k = 1; Do[While[k < 10^n, If[PrimeQ[k], c++ ]; k += 10]; Print[c], {n, 1, 10}]

Formula

a(n) + A073506(n) + A073507(n) + A073508(n) + 2 = A006880(n).

Extensions

Edited by Robert G. Wilson v, Oct 03 2002
a(10) from Robert G. Wilson v, Dec 22 2003
a(11)-a(13) from Giovanni Resta, Aug 07 2018

A087631 Number of n-digit primes ending in 3 in base 10.

Original entry on oeis.org

1, 6, 35, 268, 2092, 17263, 146565, 1274244, 11272025, 101053126, 915743823, 8372470456, 77114448042
Offset: 1

Views

Author

Meenakshi Srikanth (menakan_s(AT)yahoo.com) and Amarnath Murthy, Sep 15 2003

Keywords

Examples

			a(2) = 6, as there exist 6 two-digit prime numbers (13, 23, 43, 53, 73, and 83) with units place 3.
a(3) = 35, since there are 35 three-digit numbers with units place digit as 3.
		

Crossrefs

Programs

  • Java
    /** The terms of the sequences are generated by changing the range for j for the various numbers of digits. E.g., it ranges from 100 to 999 for three-digit numbers. */
    float r, x;
    int c = 0, count = 0;
    for (float j = 100f; j < 1000f; j++) { for (float i = 2f; i < j; i++) { r = j % i; if (r == 0) c = 1; } if (c == 0) { x = j % 10; if (x == 3) count = count + 1; } c = 0; } System.out.println("count = " + count);
    
  • Mathematica
    Table[Length[Select[Range[10^n + 3, 10^(n + 1) - 7, 10], PrimeQ[#] &]], {n, 5}] (* Alonso del Arte, Apr 27 2014 *)
  • PARI
    a(n) = my(c=0); forprime(p=10^(n-1), 10^n, if(p%10==3, c++)); c \\ Iain Fox, Aug 07 2018

Formula

From Iain Fox, Aug 07 2018: (Start)
a(n) ~ (1/4) * Integral_{x=10^(n-1)..10^n} (dx/log(x)).
a(n) = A006879(n) - A087630(n) - A087632(n) - A087633(n), for n > 1.
(End)

Extensions

More terms from Ray Chandler, Oct 04 2003
Offset corrected by Iain Fox, Aug 07 2018
a(11) from Iain Fox, Aug 07 2018
a(12)-a(13) from Giovanni Resta, Aug 07 2018

A087632 Number of n-digit primes ending in 7 in base 10.

Original entry on oeis.org

1, 5, 40, 262, 2103, 17210, 146590, 1274284, 11271819, 101051725, 915754298, 8372478663, 77114370790
Offset: 1

Views

Author

Meenakshi Srikanth (menakan_s(AT)yahoo.com) and Amarnath Murthy, Sep 15 2003

Keywords

Examples

			a(2) = 5 as there exist 5 two-digit prime numbers (17, 37, 47, 67, and 97) with units place 7.
a(3) = 40, since there are 40 three-digit numbers with units place digit as 7.
		

Crossrefs

Programs

  • Java
    /** The terms of the sequences are generated by changing the range for j for the various numbers of digits. E.g., it ranges from 100 to 999 for three-digit numbers. */
    float r, x;
    int c = 0, count = 0;
    for (float j = 100f; j < 1000f; j++) { for (float i = 2f; i < j; i++) { r = j % i; if (r == 0) c = 1; } if (c == 0) { x = j % 10; if (x == 7) count = count + 1; } c = 0; } System.out.println("count = " + count);
    
  • Mathematica
    Table[Length[Select[Range[10^n + 7, 10^(n + 1) - 3, 10], PrimeQ[#] &]], {n, 5}] (* Alonso del Arte, Apr 27 2014 *)
  • PARI
    a(n) = my(c=0); forprime(p=10^(n-1), 10^n, if(p%10==7, c++)); c \\ Iain Fox, Aug 07 2018

Formula

From Iain Fox, Aug 07 2018: (Start)
a(n) ~ (1/4) * Integral_{x=10^(n-1)..10^n} (dx/log(x)).
a(n) = A006879(n) - A087630(n) - A087631(n) - A087633(n), for n > 1.
(End)

Extensions

More terms from Ray Chandler, Oct 04 2003
Offset corrected by Iain Fox, Aug 07 2018
a(11) from Iain Fox, Aug 07 2018
a(12)-a(13) from Giovanni Resta, Aug 07 2018

A087633 Number of n-digit primes ending in 9 in base 10.

Original entry on oeis.org

0, 5, 33, 265, 2087, 17203, 146439, 1274154, 11271147, 101049993, 915748570, 8372464236, 77114396969
Offset: 1

Views

Author

Meenakshi Srikanth (menakan_s(AT)yahoo.com) and Amarnath Murthy, Sep 15 2003

Keywords

Examples

			a(2) = 5 as there exist 5 two-digit prime numbers (19, 29, 59, 79, and 89) with units place 9.
a(3) = 33, since there are 33 three-digit numbers with units place digit as 9.
		

Crossrefs

Programs

  • Java
    /** The terms of the sequences are generated by changing the range for j for the various numbers of digits. E.g., it ranges from 100 to 999 for three-digit numbers. */
    float r, x;
    int c = 0, count = 0; for (float j = 100f; j < 1000f; j++) { for (float i = 2f; i < j; i++) { r = j % i; if (r == 0) c = 1; } if (c == 0) { x = j % 10; if (x == 9) count = count + 1; } c = 0; } System.out.println("count = " + count);
    
  • Mathematica
    Table[Length[Select[Range[10^n + 9, 10^(n + 1) - 1, 10], PrimeQ]], {n, 5}] (* Alonso del Arte, Apr 27 2014 *)
  • PARI
    a(n) = my(c=0); forprime(p=10^(n-1), 10^n, if(p%10==9, c++)); c \\ Iain Fox, Aug 07 2018

Formula

From Iain Fox, Aug 07 2018: (Start)
a(n) ~ (1/4) * Integral_{x=10^(n-1)..10^n} (dx/log(x)).
a(n) = A006879(n) - A087630(n) - A087631(n) - A087632(n), for n > 1.
(End)

Extensions

Corrected and extended by Ray Chandler, Oct 04 2003
Offset corrected by Iain Fox, Aug 07 2018
a(11) from Iain Fox, Aug 07 2018
a(12)-a(13) from Giovanni Resta, Aug 07 2018
Showing 1-5 of 5 results.