cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A087715 Table read by rows where i-th row consists of primes P of the form P=j*P(i)# -1 or P=j*P(i)# +1 with 0 < j < P(i+1). Here P(r)# = A002110.

Original entry on oeis.org

3, 3, 5, 5, 7, 11, 13, 17, 19, 23, 29, 31, 59, 61, 89, 149, 151, 179, 181, 211, 419, 421, 631, 839, 1049, 1051, 1259, 1471, 1889, 2099, 2309, 2311, 4621, 9239, 9241, 11549, 11551, 13859, 18481, 20789, 23099, 25409, 25411, 30029, 90089, 120121, 150151
Offset: 0

Views

Author

Pierre CAMI, Sep 29 2003

Keywords

Examples

			Table begins:
3,3,5,
5,7,11,13,17,19,23,
29,31,59,61,89,149,151,179,181,
211,419,421,631,839,1049,1051,1259,1471,1889,2099,
2309,2311,4621,9239,9241,11549,11551,13859,18481,20789,23099,25409,25411
		

Crossrefs

Programs

  • PARI
    {for(i=1,6, p=prod(j=1,i, prime(j)); for(j=1, prime(i+1)-1, c=j*p; if(isprime(c-1),print1(c-1 ",")); if(isprime(c+1),print1(c+1 ",")); ););}

Extensions

Edited by Ray Chandler, Sep 30 2003

A087716 Base-2 pseudoprimes (see A001567) of the form j*p(i)# - p(k) or j*p(i)# + p(k), p(i) and p(k) primes with p(i) < p(k) < p(i+1)^2 and 0 < j < p(i+1).

Original entry on oeis.org

341, 1387, 2047, 4681, 13747
Offset: 1

Views

Author

Pierre CAMI, Sep 29 2003

Keywords

Comments

Conjecture: sequence has only 5 terms. This has been checked for all i <= 150.

Examples

			   2*7#  -  79 =   341,
   7*7#  -  83 =  1387,
  10*7#  -  53 =  2047,
   2*11# +  61 =  4681,
   6*11# - 113 = 13747,
  13*7#  -  29 =  2701.
		

Crossrefs

# denotes primorials; see A002110.

Programs

  • PARI
    lst(lim)=my(p=2,P=1,v=List());forprime(q=3,lim,P*=p;forprime(r=q, q^2, for(j=1,q-1,if(j*P-r>340&&psp(j*P-r),listput(v,j*P-r)); if(psp(j*P+r),listput(v,j*P+r))));p=q);vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Apr 12 2012

Extensions

Edited by David Wasserman, Apr 13 2006

A087728 Table read by rows where i-th row consists of primes P of the form P=(j*P(i)#)^2 +1 with 0 < j < P(i+1). Here P(i)# = A002110(i).

Original entry on oeis.org

5, 17, 37, 577, 8101, 14401, 22501, 32401, 44101, 176401, 5336101, 48024901, 85377601, 341510401, 533610001, 129859329601, 12770402544901, 16679709446401, 94083986096101, 6021375110150401, 11384162317628101
Offset: 0

Views

Author

Pierre CAMI, Sep 30 2003

Keywords

Examples

			Table begins:
5,17,
37,577,
8101,14401,22501,32401,
44101,176401,
5336101,48024901,85377601,341510401,533610001,
129859329601,
12770402544901,16679709446401
		

Crossrefs

Programs

  • PARI
    {for(i=1,8, p=prod(j=1,i, prime(j)); for(j=1, prime(i+1)-1, c=(j*p)^2+1; if(isprime(c),print1(c ",")); ););}

Extensions

Edited by Ray Chandler, Sep 30 2003

A088415 Primes p = prime(i) such that p(i)# - p(i+1) or p(i)# + p(i+1) or both are primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 43, 53, 59, 73, 79, 83, 89, 149, 367, 431, 853, 4007, 6143, 8819, 8969
Offset: 1

Views

Author

Ray Chandler, Oct 05 2003

Keywords

Examples

			3=p(2) is in the sequence because p(2)# + p(3) = 11 is prime.
		

Crossrefs

Cf. A087714.

Programs

  • Mathematica
    Do[ p = Product[Prime[i], {i, 1, n}]; q = Prime[n + 1]; If[ PrimeQ[p - q] || PrimeQ[p + q], Print[ Prime[n]]], {n, 1, 1435}]

Extensions

Edited by Robert G. Wilson v, Oct 17 2003

A093078 Primes p = prime(i) such that p(i)# - p(i+1) is prime.

Original entry on oeis.org

5, 7, 11, 13, 19, 79, 83, 89, 149, 367, 431, 853, 4007, 8819, 8969, 12953, 18301, 18869
Offset: 1

Views

Author

Robert G. Wilson v, Oct 25 2003

Keywords

Comments

a(19) > 22013. - J.W.L. (Jan) Eerland, Dec 19 2022
a(19) > 63317. - J.W.L. (Jan) Eerland, Dec 20 2022

Examples

			3 = p(2) is in the sequence because p(2)# + p(3) = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[p = Product[ Prime[i], {i, 1, n}]; q = Prime[n + 1]; If[ PrimeQ[p - q], Print[ Prime[n]]], {n, 1, 1435}]
    Module[{nn=1120,pr1,pr2,prmrl},pr1=Prime[Range[nn]];pr2=Prime[Range[ 2, nn+1]]; prmrl=FoldList[Times,pr1];Transpose[Select[Thread[{pr1,pr2, prmrl}], PrimeQ[#[[3]]-#[[2]]]&]][[1]]] (* Harvey P. Dale, Dec 07 2015 *)
    n=1;Monitor[Parallelize[While[True,If[PrimeQ[Product[Prime[k],{k,1,n}]-Prime[n + 1]],Print[Prime[n]]];n++];n],n] (* J.W.L. (Jan) Eerland, Dec 19 2022 *)

Extensions

a(16)-a(18) from J.W.L. (Jan) Eerland, Dec 19 2022

A093077 Primes p = prime(i) such that p(i)# + p(i+1) is prime.

Original entry on oeis.org

2, 3, 5, 13, 17, 19, 43, 53, 59, 73, 367, 6143
Offset: 1

Views

Author

Robert G. Wilson v, Oct 25 2003

Keywords

Comments

Prime(A035346(n)) = a(n). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 19 2004

Examples

			3 = p(2) is in the sequence because p(2)# + p(3) = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[p = Product[ Prime[i], {i, 1, n}]; q = Prime[n + 1]; If[ PrimeQ[p + q], Print[ Prime[n]]], {n, 1, 1435}]
    With[{nn=1000},NextPrime[#,-1]&/@(Select[Thread[{FoldList[ Times,Prime[ Range[nn]]],Prime[Range[ 2,nn+1]]}], PrimeQ[ Total[#]]&][[All,2]])] (* Harvey P. Dale, Oct 07 2018 *)
Showing 1-6 of 6 results.