cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A087714 Primes p = prime(i) such that p(i)# - p(i+1) and p(i)# + p(i+1) are both primes, where p# = A002110.

Original entry on oeis.org

5, 13, 19, 367
Offset: 1

Views

Author

Pierre CAMI, Sep 28 2003

Keywords

Comments

Conjecture: there are only 4 primes in this sequence.

Examples

			2*3*5-7 = 23 is prime, 2*3*5+7 = 37 is prime.
		

Crossrefs

Programs

  • PARI
    isok(p) = {if (isprime(p), my(pp = prod(k=1, primepi(p), prime(k)), q = nextprime(p+1)); isprime(pp-q) && isprime(pp+q););} \\ Michel Marcus, Sep 20 2019
    
  • PARI
    my(pr=1); forprime(p=1, , pr=pr*p; if(ispseudoprime(pr-nextprime(p+1)) && ispseudoprime(pr+nextprime(p+1)), print1(p, ", "))) \\ Felix Fröhlich, Sep 20 2019

A087716 Base-2 pseudoprimes (see A001567) of the form j*p(i)# - p(k) or j*p(i)# + p(k), p(i) and p(k) primes with p(i) < p(k) < p(i+1)^2 and 0 < j < p(i+1).

Original entry on oeis.org

341, 1387, 2047, 4681, 13747
Offset: 1

Views

Author

Pierre CAMI, Sep 29 2003

Keywords

Comments

Conjecture: sequence has only 5 terms. This has been checked for all i <= 150.

Examples

			   2*7#  -  79 =   341,
   7*7#  -  83 =  1387,
  10*7#  -  53 =  2047,
   2*11# +  61 =  4681,
   6*11# - 113 = 13747,
  13*7#  -  29 =  2701.
		

Crossrefs

# denotes primorials; see A002110.

Programs

  • PARI
    lst(lim)=my(p=2,P=1,v=List());forprime(q=3,lim,P*=p;forprime(r=q, q^2, for(j=1,q-1,if(j*P-r>340&&psp(j*P-r),listput(v,j*P-r)); if(psp(j*P+r),listput(v,j*P+r))));p=q);vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Apr 12 2012

Extensions

Edited by David Wasserman, Apr 13 2006

A132240 Primes congruent to {1, 29} mod 30.

Original entry on oeis.org

29, 31, 59, 61, 89, 149, 151, 179, 181, 211, 239, 241, 269, 271, 331, 359, 389, 419, 421, 449, 479, 509, 541, 569, 571, 599, 601, 631, 659, 661, 691, 719, 751, 809, 811, 839, 929, 991, 1019, 1021, 1049, 1051, 1109, 1171, 1201, 1229, 1231
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

For every prime p here, the cyclotomic polynomial Phi(15p,x) is flat.
Primes in A175887. [Reinhard Zumkeller, Jan 07 2012]

Crossrefs

Programs

  • Haskell
    a132240 n = a132240_list !! (n-1)
    a132240_list = [x | x <- a175887_list, a010051 x == 1]
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 30 in {1, 29} ]; // Vincenzo Librandi, Aug 14 2012
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{1,29},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
    Select[Flatten[#+{1,29}&/@(30Range[0,50])],PrimeQ] (* Harvey P. Dale, Sep 08 2021 *)

A257658 Primes of the form A060735(k) +- 1, where A060735 lists multiples of primorials (A002110) less than the next larger primorial.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 59, 61, 89, 149, 151, 179, 181, 211, 419, 421, 631, 839, 1049, 1051, 1259, 1471, 1889, 2099, 2309, 2311, 4621, 9239, 9241, 11549, 11551, 13859, 18481, 20789, 23099, 25409, 25411, 30029, 90089, 120121, 150151, 180179, 180181
Offset: 1

Views

Author

James M. McCanney and Robert G. Wilson v, Jul 26 2015

Keywords

Comments

After a(9), all terms are congruent to +-1 (mod 30).
More generally, for any primorial P (cf. A002110), all terms >= P-1 are congruent to +/- 1 (mod P).- This sequence is essentially the same as A087715. - M. F. Hasler, Jul 27 2015

Examples

			149 & 151 are in the sequence because they are primes +-1 from A060735(12) = 150. A term does not have to be a twin prime; those are found in A087732.
		

Crossrefs

Essentially the same as A087715.

Programs

  • Mathematica
    f[n_] := Range[Prime[n + 1] - 1] Times @@ Prime@ Range@ n; Select[ Union@ Flatten@ Join[ Array[f, 6] - 1, Array[f, 7, 0] + 1], PrimeQ@# &]

Formula

Primes among the numbers produced from A060735 +/- 1.
Showing 1-4 of 4 results.