A168363 Squares and cubes of primes.
4, 8, 9, 25, 27, 49, 121, 125, 169, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2197, 2209, 2809, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16129, 17161, 18769, 19321, 22201
Offset: 1
Keywords
Programs
-
Mathematica
m=30000;Union[Prime[Range[PrimePi[m^(1/2)]]]^2,Prime[Range[PrimePi[m^(1/3)]]]^3] (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *) With[{nn=50},Take[Union[Flatten[Table[{n^2,n^3},{n,Prime[Range[ nn]]}]]],nn]] (* Harvey P. Dale, Feb 26 2015 *)
-
PARI
for(n=1,40000,fm=factor(n);if(matsize(fm)[1]==1&(fm[1,2]==2||fm[1,2]==3),print1(n",")))
-
PARI
is(n)=my(k=isprimepower(n)); k && k<4 \\ Charles R Greathouse IV, May 24 2013
-
Python
from math import isqrt from sympy import primepi, integer_nthroot def A168363(n): def f(x): return n+x-primepi(isqrt(x))-primepi(integer_nthroot(x,3)[0]) m, k = n, f(n) while m != k: m, k = k, f(k) return int(m) # Chai Wah Wu, Aug 09 2024
Formula
A178254(a(n)) = 2. - Reinhard Zumkeller, May 24 2010
Sum_{n>=1} 1/a(n) = P(2) + P(3) = 0.6270100593..., where P is the prime zeta function. - Amiram Eldar, Dec 21 2020
Comments