cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A168363 Squares and cubes of primes.

Original entry on oeis.org

4, 8, 9, 25, 27, 49, 121, 125, 169, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2197, 2209, 2809, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16129, 17161, 18769, 19321, 22201
Offset: 1

Views

Author

Keywords

Comments

Primitive elements for powerful numbers; every powerful is product of these numbers. The representation is not necessarily unique.

Crossrefs

Programs

  • Mathematica
    m=30000;Union[Prime[Range[PrimePi[m^(1/2)]]]^2,Prime[Range[PrimePi[m^(1/3)]]]^3] (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *)
    With[{nn=50},Take[Union[Flatten[Table[{n^2,n^3},{n,Prime[Range[ nn]]}]]],nn]] (* Harvey P. Dale, Feb 26 2015 *)
  • PARI
    for(n=1,40000,fm=factor(n);if(matsize(fm)[1]==1&(fm[1,2]==2||fm[1,2]==3),print1(n",")))
    
  • PARI
    is(n)=my(k=isprimepower(n)); k && k<4 \\ Charles R Greathouse IV, May 24 2013
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot
    def A168363(n):
        def f(x): return n+x-primepi(isqrt(x))-primepi(integer_nthroot(x,3)[0])
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return int(m) # Chai Wah Wu, Aug 09 2024

Formula

A178254(a(n)) = 2. - Reinhard Zumkeller, May 24 2010
Sum_{n>=1} 1/a(n) = P(2) + P(3) = 0.6270100593..., where P is the prime zeta function. - Amiram Eldar, Dec 21 2020

A322885 Number of 3-generated Abelian groups of order n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Álvar Ibeas, Dec 29 2018

Keywords

Comments

Groups generated by fewer than 3 elements are not excluded. The number of Abelian groups with 3 invariant factors is a(n) - A046951(n).
Sum of the first three columns from A249770 (for n > 1).
Dirichlet convolution of A061704 and A010052. Dirichlet convolution of A046951 and A010057.
The number of unordered factorizations of n into biquadratefree power of primes (1 and primes, squares of primes and cubes of primes, A087797). - Amiram Eldar, Jun 12 2025

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
      mul(round((t[2]+3)^2/12),t=ifactors(n)[2])
    end proc:
    map(f, [$1..200]); # Robert Israel, May 20 2019
  • Mathematica
    a[n_] := Times @@ (Round[(# + 3)^2/12]& /@ FactorInteger[n][[All, 2]]);
    Array[a, 102] (* Jean-François Alcover, Jan 02 2019 *)
  • PARI
    a(n) = vecprod(apply(x -> round((x+3)^2/12), factor(n)[, 2])); \\ Amiram Eldar, Jun 12 2025

Formula

Multiplicative with a(p^e) = A001399(e).
Dirichlet g.f.: zeta(s) * zeta(2s) * zeta(3s).
Sum_{k=1..n} a(k) ~ Pi^2*zeta(3)*n/6 + zeta(1/2)*zeta(3/2)*sqrt(n) + zeta(1/3)*zeta(2/3)*n^(1/3). - Vaclav Kotesovec, Feb 02 2019

A277187 Numbers n such that A001158(n) == 1 (mod n).

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 36, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 04 2016

Keywords

Comments

Essentially the same as A087797. - Ilya Gutkovskiy, Dec 26 2016

Examples

			a(1) = 2 because sigma_3(2) = 1^3 + 2^3 = 9 and 9 == 1 (mod 2);
a(2) = 3 because sigma_3(3) = 1^3 + 3^3 = 28 and 28 == 1 (mod 3);
a(3) = 4 because sigma_3(4) = 1^3 + 2^3 + 4^3 = 73 and 73 == 1 (mod 4), etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300], Mod[DivisorSigma[3, #1], #1] == 1 & ]

Extensions

Edited by Ilya Gutkovskiy, Dec 26 2016

A280715 Expansion of Product_{k>=1} 1/((1 - x^prime(k))*(1 - x^(prime(k)^2))*(1 - x^(prime(k)^3))).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 15, 19, 23, 29, 36, 44, 53, 65, 78, 94, 112, 134, 159, 189, 222, 263, 307, 361, 420, 491, 569, 661, 764, 883, 1017, 1170, 1343, 1539, 1761, 2011, 2293, 2611, 2968, 3369, 3819, 4323, 4887, 5518, 6222, 7007, 7883, 8857, 9942, 11144, 12483, 13964, 15609, 17426, 19440, 21664
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 07 2017

Keywords

Comments

Number of partitions of n into parts that are primes (A000040), squares of primes (A001248) or cubes of primes (A030078).

Examples

			a(8) = 6 because we have [8], [5, 3], [4, 4], [4, 2, 2], [3, 3, 2], [2, 2, 2, 2].
		

Crossrefs

Programs

  • Mathematica
    nmax = 61; CoefficientList[Series[Product[1/((1 - x^Prime[k]) (1 - x^Prime[k]^2) (1 - x^Prime[k]^3)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/((1 - x^prime(k))*(1 - x^(prime(k)^2))*(1 - x^(prime(k)^3))).
Showing 1-4 of 4 results.