cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088305 a(0) = 1, a(n) = Fibonacci(2*n). It has the property that a(n) = 1*a(n-1) + 2*a(n-2) + 3*a(n-3) + 4*a(n-4) + ...

Original entry on oeis.org

1, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, 832040, 2178309, 5702887, 14930352, 39088169, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025, 32951280099, 86267571272, 225851433717
Offset: 0

Views

Author

Miklos Kristof, Nov 05 2003

Keywords

Comments

Number of compositions of n into one sort of 1's, two sorts of 2's, ..., k sorts of k's, ... - Joerg Arndt, Jun 21 2011
Also the number of spanning trees of a graph formed by joining a single vertex to all vertices of a path on n-1 vertices. - Edward Scheinerman (ers(AT)jhu.edu), Feb 28 2007
Row sums of triangle A128908. - Philippe Deléham, Nov 21 2007
Let P = the partial sum operator, A000012: (1; 1,1; 1,1,1; ...) and A153463 = M, the partial sum & shift operator. It appears that beginning with any randomly taken sequence S(n), iterates of the operations M * S(n), -> M * ANS, -> P * ANS, etc. (or starting with P) will rapidly converge upon a two-sequence limit cycle of (1, 2, 5, 13, 34, ...) and (1, 1, 3, 8, 21, ...). - Gary W. Adamson, Dec 27 2008
Eigensequence of triangle A004736. - Paul Barry, Nov 03 2010
a(n) = the sum of the products of all compositions of n.
Number of nonisomorphic graded posets with 0 and uniform Hasse graph of rank n, with exactly 2 elements of each rank level above 0.(Uniform used in the sense of Retakh, Serconek and Wilson. Graded poset is being used in Stanley's sense that every maximal chain has the same length n.) - David Nacin, Feb 26 2012
a(n) is the top left entry in the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 1, 1; 1, 0, 1] or of the 3 X 3 matrix [1, 1, 1; 1, 1, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

Examples

			a(5) = 55 = 1*21 + 2*8 + 3*3 + 4*1 + 5*1 = 21 + 16 + 9 + 4 + 5.
a(3) = 8 because if we multiply the compositions of three:
3; 2,1; 1,2; 1,1,1, we get 3,2,2,1 respectively, which sums to eight.
		

References

  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Apart from initial term, same as A001906.

Programs

  • Magma
    [1] cat [Fibonacci(2*n): n in [1..40]]; // G. C. Greubel, Dec 16 2022
    
  • Maple
    H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4):
    a := n -> `if`(n = 0, 1, H(2*n, 1, 1/2)):
    seq(simplify(a(n)), n=0..28); # Peter Luschny, Sep 03 2019
    # third Maple program:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*i, i=1..n))
        end:
    seq(a(n), n=0..36);  # Alois P. Heinz, Feb 09 2021
  • Mathematica
    f[list_]:=Apply[Times,list]; Table[Total[Map[f, Level[Map[Permutations, Partitions[n]], {2}]]], {n, 0, 20}]
    CoefficientList[Series[(1 - 2 x + x^2)/(1 - 3 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 16 2014 *)
    Join[{1}, Fibonacci[2*Range[40]]] (* G. C. Greubel, Dec 16 2022 *)
  • PARI
    N=66;  x='x+O('x^N);
    Vec( 1/( 1 - sum(k=1,N, k*x^k ) ) )
    /* Joerg Arndt, Sep 30 2012 */
    
  • Python
    def a(n, adict={0:1, 1:1, 2:3}):
        if n in adict:
            return adict[n]
        adict[n]=3*a(n-1)-a(n-2)
        return adict[n]
    # David Nacin, Mar 04 2012
    
  • SageMath
    def A088305(n): return 1 if (n==0) else fibonacci(2*n)
    [A088305(n) for n in range(41)] # G. C. Greubel, Dec 16 2022

Formula

a(n) = 1*a(n-1) + 2*a(n-2) + 3*a(n-3) + 4*a(n-4) + ...
G.f.: (1 -2*x + x^2)/(1 - 3*x + x^2) = 1 + x/(1 - 3*x + x^2) (see Agarwal (2000), p. 1424).
G.f.: 1/(1 - Sum_{k >= 1} k*x^k). - Joerg Arndt, Jun 21 2011
G.f.: Sum_{n >= 0} q^n / (1 - q)^(2*n). - Joerg Arndt, Dec 09 2012
a(0) = 1, a(n) = (h^(2*n) - h^(-2*n))/sqrt(5), where h = (1+sqrt(5))/2.
a(0) = 1, a(1) = 1, a(2) = 3, a(n+1) = 3*a(n) - a(n-1) for n >= 2. - Philippe Deléham, Nov 21 2007
a(n) = (((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n)/sqrt(5). - Geoffrey Critzer, Sep 23 2008
F(2n) = 1*F(2n-2) + 2*F(2n-4) + 3*F(2n-6) + 4*F(2n-8) + ...
F(2n+1) = 1 + 1*F(2n-1) + 2*F(2n-3) + 3*F(2n-5) + 4*F(2n-7) + ...
Convolutions with 1, 3, 6, 10, ..., n*(n+1)/2:
1*F(2n) + 3*F(2n-2) + 6*F(2n-4) + 10*F(2n-6) + ... = F(2n+3) - 1.
1*F(2n-1) + 3*F(2n-3) + 6*F(2n-5) + 10*F(2n-7) + ... = F(2n+2) - n - 1.
G.f.: 1/( 1 - G(0)*(1 + x)*x), where G(k) = 1 + x/(1 - x*(k+2)/(x*(k+2) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x/(x + (1-x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = H(2*n, 1, 1/2) for n > 0 where H(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], -4). - Peter Luschny, Sep 03 2019
INVERT transform of the identity function. - Alois P. Heinz, Feb 09 2021

Extensions

More terms from Ray Chandler, Nov 06 2003
Further terms from Edward Scheinerman (ers(AT)jhu.edu), Feb 28 2007