A088305 a(0) = 1, a(n) = Fibonacci(2*n). It has the property that a(n) = 1*a(n-1) + 2*a(n-2) + 3*a(n-3) + 4*a(n-4) + ...
1, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, 832040, 2178309, 5702887, 14930352, 39088169, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025, 32951280099, 86267571272, 225851433717
Offset: 0
Examples
a(5) = 55 = 1*21 + 2*8 + 3*3 + 4*1 + 5*1 = 21 + 16 + 9 + 4 + 5. a(3) = 8 because if we multiply the compositions of three: 3; 2,1; 1,2; 1,1,1, we get 3,2,2,1 respectively, which sums to eight.
References
- R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See pp 25, 29.
- Meghann M. Gibson, Combinatorics of Compositions, Electronic Theses & Dissertations, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- J. Salas and A. D. Sokal, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial, arXiv:0711.1738 [cond-mat.stat-mech], 2007-2009; J. Stat. Phys. 135 (2009) 279-373. Mentions this sequence. - _N. J. A. Sloane_, Mar 14 2014
- Luigi Santocanale, On discrete idempotent paths, arXiv:1906.05590 [math.LO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (3,-1).
Crossrefs
Programs
-
Magma
[1] cat [Fibonacci(2*n): n in [1..40]]; // G. C. Greubel, Dec 16 2022
-
Maple
H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4): a := n -> `if`(n = 0, 1, H(2*n, 1, 1/2)): seq(simplify(a(n)), n=0..28); # Peter Luschny, Sep 03 2019 # third Maple program: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-i)*i, i=1..n)) end: seq(a(n), n=0..36); # Alois P. Heinz, Feb 09 2021
-
Mathematica
f[list_]:=Apply[Times,list]; Table[Total[Map[f, Level[Map[Permutations, Partitions[n]], {2}]]], {n, 0, 20}] CoefficientList[Series[(1 - 2 x + x^2)/(1 - 3 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 16 2014 *) Join[{1}, Fibonacci[2*Range[40]]] (* G. C. Greubel, Dec 16 2022 *)
-
PARI
N=66; x='x+O('x^N); Vec( 1/( 1 - sum(k=1,N, k*x^k ) ) ) /* Joerg Arndt, Sep 30 2012 */
-
Python
def a(n, adict={0:1, 1:1, 2:3}): if n in adict: return adict[n] adict[n]=3*a(n-1)-a(n-2) return adict[n] # David Nacin, Mar 04 2012
-
SageMath
def A088305(n): return 1 if (n==0) else fibonacci(2*n) [A088305(n) for n in range(41)] # G. C. Greubel, Dec 16 2022
Formula
a(n) = 1*a(n-1) + 2*a(n-2) + 3*a(n-3) + 4*a(n-4) + ...
G.f.: (1 -2*x + x^2)/(1 - 3*x + x^2) = 1 + x/(1 - 3*x + x^2) (see Agarwal (2000), p. 1424).
G.f.: 1/(1 - Sum_{k >= 1} k*x^k). - Joerg Arndt, Jun 21 2011
G.f.: Sum_{n >= 0} q^n / (1 - q)^(2*n). - Joerg Arndt, Dec 09 2012
a(0) = 1, a(n) = (h^(2*n) - h^(-2*n))/sqrt(5), where h = (1+sqrt(5))/2.
a(0) = 1, a(1) = 1, a(2) = 3, a(n+1) = 3*a(n) - a(n-1) for n >= 2. - Philippe Deléham, Nov 21 2007
a(n) = (((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n)/sqrt(5). - Geoffrey Critzer, Sep 23 2008
F(2n) = 1*F(2n-2) + 2*F(2n-4) + 3*F(2n-6) + 4*F(2n-8) + ...
F(2n+1) = 1 + 1*F(2n-1) + 2*F(2n-3) + 3*F(2n-5) + 4*F(2n-7) + ...
Convolutions with 1, 3, 6, 10, ..., n*(n+1)/2:
1*F(2n) + 3*F(2n-2) + 6*F(2n-4) + 10*F(2n-6) + ... = F(2n+3) - 1.
1*F(2n-1) + 3*F(2n-3) + 6*F(2n-5) + 10*F(2n-7) + ... = F(2n+2) - n - 1.
G.f.: 1/( 1 - G(0)*(1 + x)*x), where G(k) = 1 + x/(1 - x*(k+2)/(x*(k+2) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x/(x + (1-x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = H(2*n, 1, 1/2) for n > 0 where H(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], -4). - Peter Luschny, Sep 03 2019
INVERT transform of the identity function. - Alois P. Heinz, Feb 09 2021
Extensions
More terms from Ray Chandler, Nov 06 2003
Further terms from Edward Scheinerman (ers(AT)jhu.edu), Feb 28 2007
Comments