cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088313 Number of "sets of lists" (cf. A000262) with an odd number of lists.

Original entry on oeis.org

0, 1, 2, 7, 36, 241, 1950, 18271, 193256, 2270017, 29272410, 410815351, 6231230412, 101560835377, 1769925341366, 32838929702671, 646218442877520, 13441862819232001, 294656673023216946, 6788407001443004647, 163962850573039534580, 4142654439686285737201
Offset: 0

Views

Author

Vladeta Jovovic, Nov 05 2003

Keywords

Comments

From Peter Bala, Mar 27 2022: (Start)
a(2*n) is even; in fact, 2*n*(2*n-1)*(2n-2) divides a(2*n). a(2*n+1) is odd.
For a positive integer k, a(n+2*k) - a(n) is divisible by k. Thus the sequence obtained by taking a(n) modulo k is purely periodic with period 2*k. Calculation suggests that when k is even the exact period equals k, and when k is odd the exact period equals 2*k. (End)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); [0] cat Coefficients(R!(Laplace( Sinh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
          b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
    A088313 := n -> ifelse(n=0, 0, n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4)): seq(simplify(A088313(n)), n = 0..21); # Peter Luschny, Dec 14 2022
  • Mathematica
    With[{m=30}, CoefficientList[Series[Sinh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
  • PARI
    my(x='x+O('x^66)); concat(0, Vec(serlaplace(sinh(x/(1-x))))) \\ Joerg Arndt, Jul 16 2013
    
  • SageMath
    def A088313_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( sinh(x/(1-x)) ).egf_to_ogf().list()
    A088313_list(40) # G. C. Greubel, Dec 13 2022

Formula

E.g.f.: sinh(x/(1-x)).
a(n) = Sum_{k=1..floor((n+1)/2)} n!/(2*k-1)!*binomial(n-1, 2*k-2).
E.g.f.: sinh(x/(1-x)) = x/(2-2*x)*E(0), where E(k)= 1 + 1/( 1 - x^2/(x^2 + 2*(1-x)^2*(k+1)*(2*k+3)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
a(n) ~ 2^(-3/2) * n^(n-1/4) * exp(2*sqrt(n)-n-1/2). - Vaclav Kotesovec, Jul 04 2015
a(n) = (1/2)*(A000262(n) - (-1)^n*A111884(n)). - Peter Bala, Mar 27 2022
a(n) = n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4) for n >= 1. - Peter Luschny, Dec 14 2022

Extensions

a(0)=0 prepended by Alois P. Heinz, May 10 2016