cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A109777 G.f. = f(x), where f(x)^2 = o.g.f. for A088313 (with offset 0).

Original entry on oeis.org

1, 1, 3, 15, 101, 829, 7891, 84735, 1009065, 13170841, 186798003, 2859068831, 46960097413, 823787983021, 15370572776091, 303929827526887, 6348320745774993, 139663855708967665, 3227812335094695171, 78180132507785056399, 1980181972528939129861, 52344600987011191983613
Offset: 0

Views

Author

N. J. A. Sloane and Nadia Heninger, Aug 15 2005

Keywords

Examples

			The present sequence has g.f. f(x) = 1 + x + 3*x^2 + 15*x^3 + ...
A088313 [1,2,7,36,242,...] has e.g.f. = sinh(x/(1-x)) = x + x^2 + 7/6*x^3 + 3/2*x^4 + 241/120*x^5 + 65/24*x^6 + 18271/5040*x^7 + ... and (with offset 0) o.g.f. = 1 + 2*x^2 + 7*x^3 + 36*x^4 + ... = f(x)^2.
		

Programs

  • Mathematica
    nmax = 22;
    f[x_] = Sqrt[Sum[SeriesCoefficient[Sinh[x/(1-x)], {x, 0, n}] n! x^n, {n, 0, nmax}]] + O[x]^nmax // Normal;
    List @@ f[x] /. x -> 1 (* Jean-François Alcover, Oct 08 2018 *)

A088312 Number of sets of lists (cf. A000262) with even number of lists.

Original entry on oeis.org

1, 0, 1, 6, 37, 260, 2101, 19362, 201097, 2326536, 29668681, 413257790, 6238931821, 101415565836, 1765092183037, 32734873484250, 644215775792401, 13404753632014352, 293976795292186897, 6775966692145553526, 163735077313046119861, 4138498600079573989140
Offset: 0

Views

Author

Vladeta Jovovic, Nov 05 2003

Keywords

Comments

From Peter Bala, Mar 27 2022: (Start)
a(2*n) is odd ; a(2*n+1) is even.
If k is odd then k*(k-1) divides a(k). Consequently, 6 divides a(6*n+3), 10 divides a(10*n+5), 14 divides a(14*n+7), and in general, if k is odd then 2*k divides a(2*k*n + k).
For a positive integer k, a(n+2*k) - a(n) is divisible by k. Thus the sequence obtained by taking a(n) modulo k is purely periodic with period 2*k. Calculation suggests that when k is even the exact period equals k, and when k is odd the exact period equals 2*k. (End)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Cosh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
          b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
    A088312 := n -> ifelse(n=0, 1, (1/2)*(n - 1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4)): seq(simplify(A088312(n)), n = 0..21); # Peter Luschny, Dec 14 2022
  • Mathematica
    With[{m=30}, CoefficientList[Series[Cosh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
    Table[Sum[n!/(2*k)! Binomial[n - 1, 2*k - 1], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Emanuele Munarini, Sep 03 2017 *)
  • SageMath
    def A088312_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( cosh(x/(1-x)) ).egf_to_ogf().list()
    A088312_list(40) # G. C. Greubel, Dec 13 2022

Formula

E.g.f.: cosh(x/(1-x)).
a(n) = Sum_{k=1..floor(n/2)} n!/(2*k)!*binomial(n-1,2*k-1).
a(n) ~ 2^(-3/2) * n^(n-1/4) * exp(2*sqrt(n)-n-1/2). - Vaclav Kotesovec, Jul 04 2015
a(n+4) - 2*(2*n+5)*a(n+3) + (6*n^2+24*n+23)*a(n+2) - 2*(n+1)*(n+2)*(2*n+3)*a(n+1) + n*(n+1)^2*(n+2)*a(n) = 0. - Emanuele Munarini, Sep 03 2017
a(n) = (1/2)*(A000262(n) + (-1)^n*A111884(n)). - Peter Bala, Mar 27 2022
a(n) = (1/2)*(n-1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4) for n >= 1. - Peter Luschny, Dec 14 2022

Extensions

More terms from Vaclav Kotesovec, Jul 04 2015
a(0)-a(1) prepended by Alois P. Heinz, May 10 2016

A386474 Number of sets of lists of [n] such that no list is longer than than the total number of lists.

Original entry on oeis.org

1, 1, 1, 7, 25, 141, 1171, 9913, 85233, 907273, 11010691, 143824341, 1988010553, 29605763773, 475664908083, 8284952367721, 153508912353121, 2997209814190353, 61485486404453443, 1326994255131585373, 30144049509450774441, 718905298680190094341, 17940822818538396541843
Offset: 0

Views

Author

John Tyler Rascoe, Jul 23 2025

Keywords

Comments

Here sets of lists are set partitions of [n] such that the elements within each block are ordered but the blocks themselves are unordered.

Examples

			a(3) = 7 counts: {(1),(2),(3)}, {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(m>n+l, 0, `if`(n=0, 1,
          add(b(n-j, max(m, j), l+1)*(n-1)!*j/(n-j)!, j=1..n)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..22);  # Alois P. Heinz, Jul 23 2025
  • Mathematica
    With[{m = 22}, CoefficientList[1 + Series[Sum[((x - x^(i + 1))/(1 - x))^i/i!, {i, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
  • PARI
    R_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(sum(i=0,N,((x-x^(i+1))/(1-x))^i/i!)))}

Formula

E.g.f.: Sum_{i>=0} ((x - x^(i+1))/(1 - x))^i / i!.

A317406 Expansion of e.g.f. sin(x/(1 - x)).

Original entry on oeis.org

0, 1, 2, 5, 12, 1, -450, -6931, -89096, -1120895, -14394150, -191263051, -2638282812, -37716883775, -556075744042, -8385570334051, -127637336779920, -1916072623603199, -27033275598036174, -311878728377256475, -918069644450841860, 120594465496571606401, 6362190374664242284782
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2018

Keywords

Comments

Lah transform of the sequence 0, 1, 0, -1, 0, 1, 0, -1, ...

Crossrefs

Programs

  • Maple
    a:=series(sin(x/(1 - x)), x=0, 22): seq(n!*coeff(a, x, n), n=0..21); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Sin[x/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(k + 1) Binomial[n - 1, 2 k - 2] n!/(2 k - 1)!, {k, Floor[(n + 1)/2]}], {n, 0, 22}]
    Join[{0}, Table[n! HypergeometricPFQ[{1/2 - n/2, 1 - n/2}, {1/2, 1, 3/2}, -1/4], {n, 22}]]

Formula

a(n) = Sum_{k=1..floor((n+1)/2)} (-1)^(k+1)*binomial(n-1,2*k-2)*n!/(2*k-1)!.

A386497 Number of sets of lists of [n] such that one list is the largest.

Original entry on oeis.org

1, 1, 2, 12, 60, 440, 3390, 33852, 338072, 4116240, 51776730, 736751180, 11075784852, 183142075272, 3157190863190, 59336602681020, 1164223828582320, 24348331444705952, 533422896546272562, 12365952739192923660, 298208300418298756460, 7570420981014167756760
Offset: 0

Views

Author

John Tyler Rascoe, Jul 23 2025

Keywords

Comments

Here sets of lists are set partitions of [n] such that the elements within each block are ordered but the blocks themselves are unordered.

Examples

			a(3) = 12 counts: {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}, {(1,2,3)}, {(1,3,2)}, {(2,1,3)}, {(2,3,1)}, {(3,1,2)}, {(3,2,1)}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, t, add(b(n-j, max(m, j),
          `if`(j>m, 1, `if`(j=m, 0, t)))*(n-1)!*j/(n-j)!, j=1..n))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jul 23 2025
  • Mathematica
    With[{m = 21}, CoefficientList[Series[1 + Sum[x^j*Exp[(x - x^j)/(1 - x)], {j, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
  • PARI
    B_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(1+sum(j=1,N, x^j*exp((x-x^j)/(1-x)))))}

Formula

E.g.f.: 1 + Sum_{j>0} x^j * exp((x - x^j)/(1 - x)).
Showing 1-5 of 5 results.