A109777
G.f. = f(x), where f(x)^2 = o.g.f. for A088313 (with offset 0).
Original entry on oeis.org
1, 1, 3, 15, 101, 829, 7891, 84735, 1009065, 13170841, 186798003, 2859068831, 46960097413, 823787983021, 15370572776091, 303929827526887, 6348320745774993, 139663855708967665, 3227812335094695171, 78180132507785056399, 1980181972528939129861, 52344600987011191983613
Offset: 0
The present sequence has g.f. f(x) = 1 + x + 3*x^2 + 15*x^3 + ...
A088313 [1,2,7,36,242,...] has e.g.f. = sinh(x/(1-x)) = x + x^2 + 7/6*x^3 + 3/2*x^4 + 241/120*x^5 + 65/24*x^6 + 18271/5040*x^7 + ... and (with offset 0) o.g.f. = 1 + 2*x^2 + 7*x^3 + 36*x^4 + ... = f(x)^2.
-
nmax = 22;
f[x_] = Sqrt[Sum[SeriesCoefficient[Sinh[x/(1-x)], {x, 0, n}] n! x^n, {n, 0, nmax}]] + O[x]^nmax // Normal;
List @@ f[x] /. x -> 1 (* Jean-François Alcover, Oct 08 2018 *)
A088312
Number of sets of lists (cf. A000262) with even number of lists.
Original entry on oeis.org
1, 0, 1, 6, 37, 260, 2101, 19362, 201097, 2326536, 29668681, 413257790, 6238931821, 101415565836, 1765092183037, 32734873484250, 644215775792401, 13404753632014352, 293976795292186897, 6775966692145553526, 163735077313046119861, 4138498600079573989140
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..444
- Peter Bala, Integer sequences that become periodic on reduction modulo k for all k
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- N. J. A. Sloane, LAH transform
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Cosh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
-
b:= proc(n, t) option remember; `if`(n=0, t, add(
b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
A088312 := n -> ifelse(n=0, 1, (1/2)*(n - 1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4)): seq(simplify(A088312(n)), n = 0..21); # Peter Luschny, Dec 14 2022
-
With[{m=30}, CoefficientList[Series[Cosh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
Table[Sum[n!/(2*k)! Binomial[n - 1, 2*k - 1], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Emanuele Munarini, Sep 03 2017 *)
-
def A088312_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( cosh(x/(1-x)) ).egf_to_ogf().list()
A088312_list(40) # G. C. Greubel, Dec 13 2022
A386474
Number of sets of lists of [n] such that no list is longer than than the total number of lists.
Original entry on oeis.org
1, 1, 1, 7, 25, 141, 1171, 9913, 85233, 907273, 11010691, 143824341, 1988010553, 29605763773, 475664908083, 8284952367721, 153508912353121, 2997209814190353, 61485486404453443, 1326994255131585373, 30144049509450774441, 718905298680190094341, 17940822818538396541843
Offset: 0
a(3) = 7 counts: {(1),(2),(3)}, {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}.
-
b:= proc(n, m, l) option remember; `if`(m>n+l, 0, `if`(n=0, 1,
add(b(n-j, max(m, j), l+1)*(n-1)!*j/(n-j)!, j=1..n)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..22); # Alois P. Heinz, Jul 23 2025
-
With[{m = 22}, CoefficientList[1 + Series[Sum[((x - x^(i + 1))/(1 - x))^i/i!, {i, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
-
R_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(sum(i=0,N,((x-x^(i+1))/(1-x))^i/i!)))}
A317406
Expansion of e.g.f. sin(x/(1 - x)).
Original entry on oeis.org
0, 1, 2, 5, 12, 1, -450, -6931, -89096, -1120895, -14394150, -191263051, -2638282812, -37716883775, -556075744042, -8385570334051, -127637336779920, -1916072623603199, -27033275598036174, -311878728377256475, -918069644450841860, 120594465496571606401, 6362190374664242284782
Offset: 0
-
a:=series(sin(x/(1 - x)), x=0, 22): seq(n!*coeff(a, x, n), n=0..21); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[Sin[x/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(k + 1) Binomial[n - 1, 2 k - 2] n!/(2 k - 1)!, {k, Floor[(n + 1)/2]}], {n, 0, 22}]
Join[{0}, Table[n! HypergeometricPFQ[{1/2 - n/2, 1 - n/2}, {1/2, 1, 3/2}, -1/4], {n, 22}]]
A386497
Number of sets of lists of [n] such that one list is the largest.
Original entry on oeis.org
1, 1, 2, 12, 60, 440, 3390, 33852, 338072, 4116240, 51776730, 736751180, 11075784852, 183142075272, 3157190863190, 59336602681020, 1164223828582320, 24348331444705952, 533422896546272562, 12365952739192923660, 298208300418298756460, 7570420981014167756760
Offset: 0
a(3) = 12 counts: {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}, {(1,2,3)}, {(1,3,2)}, {(2,1,3)}, {(2,3,1)}, {(3,1,2)}, {(3,2,1)}.
-
b:= proc(n, m, t) option remember; `if`(n=0, t, add(b(n-j, max(m, j),
`if`(j>m, 1, `if`(j=m, 0, t)))*(n-1)!*j/(n-j)!, j=1..n))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..21); # Alois P. Heinz, Jul 23 2025
-
With[{m = 21}, CoefficientList[Series[1 + Sum[x^j*Exp[(x - x^j)/(1 - x)], {j, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
-
B_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(1+sum(j=1,N, x^j*exp((x-x^j)/(1-x)))))}
Showing 1-5 of 5 results.
Comments