A088313
Number of "sets of lists" (cf. A000262) with an odd number of lists.
Original entry on oeis.org
0, 1, 2, 7, 36, 241, 1950, 18271, 193256, 2270017, 29272410, 410815351, 6231230412, 101560835377, 1769925341366, 32838929702671, 646218442877520, 13441862819232001, 294656673023216946, 6788407001443004647, 163962850573039534580, 4142654439686285737201
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..444
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- N. J. A. Sloane, LAH transform
-
R:=PowerSeriesRing(Rationals(), 30); [0] cat Coefficients(R!(Laplace( Sinh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
-
b:= proc(n, t) option remember; `if`(n=0, t, add(
b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
A088313 := n -> ifelse(n=0, 0, n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4)): seq(simplify(A088313(n)), n = 0..21); # Peter Luschny, Dec 14 2022
-
With[{m=30}, CoefficientList[Series[Sinh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
-
my(x='x+O('x^66)); concat(0, Vec(serlaplace(sinh(x/(1-x))))) \\ Joerg Arndt, Jul 16 2013
-
def A088313_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( sinh(x/(1-x)) ).egf_to_ogf().list()
A088313_list(40) # G. C. Greubel, Dec 13 2022
A317409
Expansion of e.g.f. cos(x/(1 - x)).
Original entry on oeis.org
1, 0, -1, -6, -35, -220, -1501, -10962, -83495, -632952, -4260601, -13852190, 355180981, 12991115436, 320077652075, 7153866992790, 155785273182001, 3395838000334352, 75000970329466895, 1687941779356532682, 38803334491247820301, 911633573138881234740, 21870615120012355726259
Offset: 0
-
a:=series(cos(x/(1 - x)), x=0, 22): seq(n!*coeff(a, x, n), n=0..21); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[Cos[x/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^k Binomial[n - 1, 2 k - 1] n!/(2 k)!, {k, 0, Floor[n/2]}], {n, 0, 22}]
Join[{1}, Table[(1 - n) n! HypergeometricPFQ[{1 - n/2, 3/2 - n/2}, {3/2, 3/2, 2}, -1/4]/2, {n, 22}]]
-
my(x='x + O('x^25)); Vec(serlaplace(cos(x/(1 - x)))) \\ Michel Marcus, Mar 26 2019
A014297
a(n) = n! * C(n+2, 2) * 2^(n+1).
Original entry on oeis.org
2, 12, 96, 960, 11520, 161280, 2580480, 46448640, 928972800, 20437401600, 490497638400, 12752938598400, 357082280755200, 10712468422656000, 342798989524992000, 11655165643849728000, 419585963178590208000, 15944266600786427904000, 637770664031457116160000
Offset: 0
-
List([0..20], n-> 2^n*Factorial(n+2)); # G. C. Greubel, May 05 2019
-
[2^n*Factorial(n+2): n in [0..20]]; // G. C. Greubel, May 05 2019
-
seq(count(Permutation(n+1))*count(Composition(n)),n=1..17); # Zerinvary Lajos, Oct 16 2006
-
Drop[CoefficientList[Series[(1-x)^2/(1-2x), {x, 0, 20}], x]* Table[n!, {n, 0, 20}], 2] (* Geoffrey Critzer, Mar 03 2010 *)
Part[#, Range[1, Length[#], 1]]&@(Array[#!&, Length[#], 0]*#)&@CoefficientList[Series[2/(1 - 2*x)^3, {x, 0, 20}], x]// ExpandAll (* Vincenzo Librandi, Jan 04 2013 - after Olivier Gérard in A213068 *)
Table[n!Binomial[n+2,2]2^(n+1),{n,0,30}] (* Harvey P. Dale, Dec 27 2022 *)
-
a(n) = (n+2)!*2^n; \\ Joerg Arndt, May 05 2019
-
[2^n*factorial(n+2) for n in (0..20)] # G. C. Greubel, May 05 2019
A386474
Number of sets of lists of [n] such that no list is longer than than the total number of lists.
Original entry on oeis.org
1, 1, 1, 7, 25, 141, 1171, 9913, 85233, 907273, 11010691, 143824341, 1988010553, 29605763773, 475664908083, 8284952367721, 153508912353121, 2997209814190353, 61485486404453443, 1326994255131585373, 30144049509450774441, 718905298680190094341, 17940822818538396541843
Offset: 0
a(3) = 7 counts: {(1),(2),(3)}, {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}.
-
b:= proc(n, m, l) option remember; `if`(m>n+l, 0, `if`(n=0, 1,
add(b(n-j, max(m, j), l+1)*(n-1)!*j/(n-j)!, j=1..n)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..22); # Alois P. Heinz, Jul 23 2025
-
With[{m = 22}, CoefficientList[1 + Series[Sum[((x - x^(i + 1))/(1 - x))^i/i!, {i, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
-
R_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(sum(i=0,N,((x-x^(i+1))/(1-x))^i/i!)))}
A386497
Number of sets of lists of [n] such that one list is the largest.
Original entry on oeis.org
1, 1, 2, 12, 60, 440, 3390, 33852, 338072, 4116240, 51776730, 736751180, 11075784852, 183142075272, 3157190863190, 59336602681020, 1164223828582320, 24348331444705952, 533422896546272562, 12365952739192923660, 298208300418298756460, 7570420981014167756760
Offset: 0
a(3) = 12 counts: {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}, {(1,2,3)}, {(1,3,2)}, {(2,1,3)}, {(2,3,1)}, {(3,1,2)}, {(3,2,1)}.
-
b:= proc(n, m, t) option remember; `if`(n=0, t, add(b(n-j, max(m, j),
`if`(j>m, 1, `if`(j=m, 0, t)))*(n-1)!*j/(n-j)!, j=1..n))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..21); # Alois P. Heinz, Jul 23 2025
-
With[{m = 21}, CoefficientList[Series[1 + Sum[x^j*Exp[(x - x^j)/(1 - x)], {j, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
-
B_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(1+sum(j=1,N, x^j*exp((x-x^j)/(1-x)))))}
Showing 1-5 of 5 results.
Comments