cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A088313 Number of "sets of lists" (cf. A000262) with an odd number of lists.

Original entry on oeis.org

0, 1, 2, 7, 36, 241, 1950, 18271, 193256, 2270017, 29272410, 410815351, 6231230412, 101560835377, 1769925341366, 32838929702671, 646218442877520, 13441862819232001, 294656673023216946, 6788407001443004647, 163962850573039534580, 4142654439686285737201
Offset: 0

Views

Author

Vladeta Jovovic, Nov 05 2003

Keywords

Comments

From Peter Bala, Mar 27 2022: (Start)
a(2*n) is even; in fact, 2*n*(2*n-1)*(2n-2) divides a(2*n). a(2*n+1) is odd.
For a positive integer k, a(n+2*k) - a(n) is divisible by k. Thus the sequence obtained by taking a(n) modulo k is purely periodic with period 2*k. Calculation suggests that when k is even the exact period equals k, and when k is odd the exact period equals 2*k. (End)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); [0] cat Coefficients(R!(Laplace( Sinh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
          b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
    A088313 := n -> ifelse(n=0, 0, n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4)): seq(simplify(A088313(n)), n = 0..21); # Peter Luschny, Dec 14 2022
  • Mathematica
    With[{m=30}, CoefficientList[Series[Sinh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
  • PARI
    my(x='x+O('x^66)); concat(0, Vec(serlaplace(sinh(x/(1-x))))) \\ Joerg Arndt, Jul 16 2013
    
  • SageMath
    def A088313_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( sinh(x/(1-x)) ).egf_to_ogf().list()
    A088313_list(40) # G. C. Greubel, Dec 13 2022

Formula

E.g.f.: sinh(x/(1-x)).
a(n) = Sum_{k=1..floor((n+1)/2)} n!/(2*k-1)!*binomial(n-1, 2*k-2).
E.g.f.: sinh(x/(1-x)) = x/(2-2*x)*E(0), where E(k)= 1 + 1/( 1 - x^2/(x^2 + 2*(1-x)^2*(k+1)*(2*k+3)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
a(n) ~ 2^(-3/2) * n^(n-1/4) * exp(2*sqrt(n)-n-1/2). - Vaclav Kotesovec, Jul 04 2015
a(n) = (1/2)*(A000262(n) - (-1)^n*A111884(n)). - Peter Bala, Mar 27 2022
a(n) = n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4) for n >= 1. - Peter Luschny, Dec 14 2022

Extensions

a(0)=0 prepended by Alois P. Heinz, May 10 2016

A317409 Expansion of e.g.f. cos(x/(1 - x)).

Original entry on oeis.org

1, 0, -1, -6, -35, -220, -1501, -10962, -83495, -632952, -4260601, -13852190, 355180981, 12991115436, 320077652075, 7153866992790, 155785273182001, 3395838000334352, 75000970329466895, 1687941779356532682, 38803334491247820301, 911633573138881234740, 21870615120012355726259
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2018

Keywords

Comments

Lah transform of the sequence 1, 0, -1, 0, 1, 0, -1, 0, ...

Crossrefs

Programs

  • Maple
    a:=series(cos(x/(1 - x)), x=0, 22): seq(n!*coeff(a, x, n), n=0..21); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Cos[x/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^k Binomial[n - 1, 2 k - 1] n!/(2 k)!, {k, 0, Floor[n/2]}], {n, 0, 22}]
    Join[{1}, Table[(1 - n) n! HypergeometricPFQ[{1 - n/2, 3/2 - n/2}, {3/2, 3/2, 2}, -1/4]/2, {n, 22}]]
  • PARI
    my(x='x + O('x^25)); Vec(serlaplace(cos(x/(1 - x)))) \\ Michel Marcus, Mar 26 2019

Formula

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-1,2*k-1)*n!/(2*k)!.
-2*(2*n + 3)*(n + 2)*(n + 1)*a(n + 1) + (6*n^2 + 24*n + 25)*a(n + 2) - 2*(2*n + 5)*a(n + 3) + a(n + 4) + n*(n + 2)*(n + 1)^2*a(n)=0. - Robert Israel, Mar 26 2019

A014297 a(n) = n! * C(n+2, 2) * 2^(n+1).

Original entry on oeis.org

2, 12, 96, 960, 11520, 161280, 2580480, 46448640, 928972800, 20437401600, 490497638400, 12752938598400, 357082280755200, 10712468422656000, 342798989524992000, 11655165643849728000, 419585963178590208000, 15944266600786427904000, 637770664031457116160000
Offset: 0

Views

Author

Keywords

Comments

Partition the set {1,2,...,n+2} into an even number of subsets. Arrange (linearly order) the elements within each subset and then arrange the subsets. - Geoffrey Critzer, Mar 03 2010

Crossrefs

Essentially the same as A052564.
Cf. A088312.

Programs

  • GAP
    List([0..20], n-> 2^n*Factorial(n+2)); # G. C. Greubel, May 05 2019
  • Magma
    [2^n*Factorial(n+2): n in [0..20]]; // G. C. Greubel, May 05 2019
    
  • Maple
    seq(count(Permutation(n+1))*count(Composition(n)),n=1..17); # Zerinvary Lajos, Oct 16 2006
  • Mathematica
    Drop[CoefficientList[Series[(1-x)^2/(1-2x), {x, 0, 20}], x]* Table[n!, {n, 0, 20}], 2] (* Geoffrey Critzer, Mar 03 2010 *)
    Part[#, Range[1, Length[#], 1]]&@(Array[#!&, Length[#], 0]*#)&@CoefficientList[Series[2/(1 - 2*x)^3, {x, 0, 20}], x]// ExpandAll (* Vincenzo Librandi, Jan 04 2013 - after Olivier Gérard in A213068 *)
    Table[n!Binomial[n+2,2]2^(n+1),{n,0,30}] (* Harvey P. Dale, Dec 27 2022 *)
  • PARI
    a(n) = (n+2)!*2^n; \\ Joerg Arndt, May 05 2019
    
  • Sage
    [2^n*factorial(n+2) for n in (0..20)] # G. C. Greubel, May 05 2019
    

Formula

a(n) = Sum_{k=0..n} (n+2)!*C(n,k).
Prepend the sequence with 1,0, then e.g.f. is (1-x)^2/(1-2*x). - Geoffrey Critzer, Mar 03 2010
E.g.f.: 2/(1-2*x)^3. - R. J. Mathar, Nov 27 2011
a(n) = 2*A051578(n). - R. J. Mathar, Apr 26 2017
a(n) = (n+2)! * 2^n. - Joerg Arndt, May 05 2019
From Amiram Eldar, Jul 04 2020: (Start)
Sum_{n>=0} 1/a(n) = 4*sqrt(e) - 6.
Sum_{n>=0} (-1)^n/a(n) = 4/sqrt(e) - 2. (End)

A386474 Number of sets of lists of [n] such that no list is longer than than the total number of lists.

Original entry on oeis.org

1, 1, 1, 7, 25, 141, 1171, 9913, 85233, 907273, 11010691, 143824341, 1988010553, 29605763773, 475664908083, 8284952367721, 153508912353121, 2997209814190353, 61485486404453443, 1326994255131585373, 30144049509450774441, 718905298680190094341, 17940822818538396541843
Offset: 0

Views

Author

John Tyler Rascoe, Jul 23 2025

Keywords

Comments

Here sets of lists are set partitions of [n] such that the elements within each block are ordered but the blocks themselves are unordered.

Examples

			a(3) = 7 counts: {(1),(2),(3)}, {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(m>n+l, 0, `if`(n=0, 1,
          add(b(n-j, max(m, j), l+1)*(n-1)!*j/(n-j)!, j=1..n)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..22);  # Alois P. Heinz, Jul 23 2025
  • Mathematica
    With[{m = 22}, CoefficientList[1 + Series[Sum[((x - x^(i + 1))/(1 - x))^i/i!, {i, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
  • PARI
    R_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(sum(i=0,N,((x-x^(i+1))/(1-x))^i/i!)))}

Formula

E.g.f.: Sum_{i>=0} ((x - x^(i+1))/(1 - x))^i / i!.

A386497 Number of sets of lists of [n] such that one list is the largest.

Original entry on oeis.org

1, 1, 2, 12, 60, 440, 3390, 33852, 338072, 4116240, 51776730, 736751180, 11075784852, 183142075272, 3157190863190, 59336602681020, 1164223828582320, 24348331444705952, 533422896546272562, 12365952739192923660, 298208300418298756460, 7570420981014167756760
Offset: 0

Views

Author

John Tyler Rascoe, Jul 23 2025

Keywords

Comments

Here sets of lists are set partitions of [n] such that the elements within each block are ordered but the blocks themselves are unordered.

Examples

			a(3) = 12 counts: {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}, {(1,2,3)}, {(1,3,2)}, {(2,1,3)}, {(2,3,1)}, {(3,1,2)}, {(3,2,1)}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, t, add(b(n-j, max(m, j),
          `if`(j>m, 1, `if`(j=m, 0, t)))*(n-1)!*j/(n-j)!, j=1..n))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jul 23 2025
  • Mathematica
    With[{m = 21}, CoefficientList[Series[1 + Sum[x^j*Exp[(x - x^j)/(1 - x)], {j, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
  • PARI
    B_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(1+sum(j=1,N, x^j*exp((x-x^j)/(1-x)))))}

Formula

E.g.f.: 1 + Sum_{j>0} x^j * exp((x - x^j)/(1 - x)).
Showing 1-5 of 5 results.