cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A223718 Number of unimodal functions [1..n]->[0..2].

Original entry on oeis.org

1, 3, 9, 22, 46, 86, 148, 239, 367, 541, 771, 1068, 1444, 1912, 2486, 3181, 4013, 4999, 6157, 7506, 9066, 10858, 12904, 15227, 17851, 20801, 24103, 27784, 31872, 36396, 41386, 46873, 52889, 59467, 66641, 74446, 82918, 92094, 102012, 112711, 124231
Offset: 0

Views

Author

R. H. Hardin, Mar 26 2013

Keywords

Comments

Column 1 of A223725.

Examples

			Some solutions for n=3
..1....2....0....1....0....2....1....2....0....2....0....1....0....1....0....1
..2....1....1....1....0....0....0....1....0....2....2....1....1....2....2....2
..0....1....0....0....1....0....0....0....2....2....1....1....1....2....0....1
From _Joerg Arndt_, Dec 27 2023: (Start)
The a(3) = 22 such functions are (dots for zeros)
   1:  [ . . . ]
   2:  [ . . 1 ]
   3:  [ . . 2 ]
   4:  [ . 1 . ]
   5:  [ . 1 1 ]
   6:  [ . 1 2 ]
   7:  [ . 2 . ]
   8:  [ . 2 1 ]
   9:  [ . 2 2 ]
  10:  [ 1 . . ]
  11:  [ 1 1 . ]
  12:  [ 1 1 1 ]
  13:  [ 1 1 2 ]
  14:  [ 1 2 . ]
  15:  [ 1 2 1 ]
  16:  [ 1 2 2 ]
  17:  [ 2 . . ]
  18:  [ 2 1 . ]
  19:  [ 2 1 1 ]
  20:  [ 2 2 . ]
  21:  [ 2 2 1 ]
  22:  [ 2 2 2 ]
(End)
		

Crossrefs

Column m=3 of A071920.
Cf. A000124 (unimodal functions [1..n]->[0..1]), A088536 ([1..n] -> [1..n]).

Formula

a(n) = A071920(n,3) = 1+n*(n+1)*(n^2+5*n+18)/24.
G.f.: 1-x*(x^2-3*x+3)*(x^2-x+1) / (x-1)^5 . a(n) = 1+A051744(n). - R. J. Mathar, May 17 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 27 2023

A071920 Square array giving number of unimodal functions [n]->[m] for n>=0, m>=0, with a(0,m)=0 for all m>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 9, 7, 1, 0, 0, 5, 16, 22, 11, 1, 0, 0, 6, 25, 50, 46, 16, 1, 0, 0, 7, 36, 95, 130, 86, 22, 1, 0, 0, 8, 49, 161, 295, 296, 148, 29, 1, 0, 0, 9, 64, 252, 581, 791, 610, 239, 37, 1, 0
Offset: 0

Views

Author

Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 14 2002

Keywords

Comments

If one uses a definition of unimodality that involves existential quantifiers on the domain of a function then a(0,m)=0 a priori.

Examples

			Square array a(n,m) begins:
  0,    0,    0,    0,    0,    0,     0,     0,      0, ...
  0,    1,    2,    3,    4,    5,     6,     7,      8, ...
  0,    1,    4,    9,   16,   25,    36,    49,     64, ...
  0,    1,    7,   22,   50,   95,   161,   252,    372, ...
  0,    1,   11,   46,  130,  295,   581,  1036,   1716, ...
  0,    1,   16,   86,  296,  791,  1792,  3612,   6672, ...
  0,    1,   22,  148,  610, 1897,  4900, 11088,  22716, ...
  0,    1,   29,  239, 1163, 4166, 12174, 30738,  69498, ...
  0,    1,   37,  367, 2083, 8518, 27966, 78354, 194634, ...
		

Crossrefs

Main diagonal is A088536.

Programs

Formula

a(n,m) = Sum_{k=0..m-1} binomial(n+2k-1, 2k) if n>0.

A071921 Square array giving number of unimodal functions [n]->[m] for n>=0, m>=0, with a(0,m)=1 by definition, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 7, 1, 0, 1, 5, 16, 22, 11, 1, 0, 1, 6, 25, 50, 46, 16, 1, 0, 1, 7, 36, 95, 130, 86, 22, 1, 0, 1, 8, 49, 161, 295, 296, 148, 29, 1, 0, 1, 9, 64, 252, 581, 791, 610, 239, 37, 1, 0
Offset: 0

Views

Author

Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 14 2002

Keywords

Comments

If one uses a definition of unimodality that involves universal quantifiers on the domain of a function then a(0,m)=1 a priori.

Examples

			Square array a(n,m) begins:
  1, 1,  1,   1,    1,    1,     1,     1,      1, ...
  0, 1,  2,   3,    4,    5,     6,     7,      8, ...
  0, 1,  4,   9,   16,   25,    36,    49,     64, ...
  0, 1,  7,  22,   50,   95,   161,   252,    372, ...
  0, 1, 11,  46,  130,  295,   581,  1036,   1716, ...
  0, 1, 16,  86,  296,  791,  1792,  3612,   6672, ...
  0, 1, 22, 148,  610, 1897,  4900, 11088,  22716, ...
  0, 1, 29, 239, 1163, 4166, 12174, 30738,  69498, ...
  0, 1, 37, 367, 2083, 8518, 27966, 78354, 194634, ...
		

Crossrefs

Main diagonal gives A088536 (for n>=1).

Programs

  • Maple
    a:= (n, m)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..m-1)):
    seq(seq(a(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 22 2013
  • Mathematica
    a[0, 0] = 1; a[n_, m_] := Sum[Binomial[2k+n-1, 2k], {k, 0, m-1}]; Table[a[n - m, m], {n, 0, 12}, {m, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 11 2015 *)

Formula

a(n,m) = 1 if n=0, m>=0, a(n,m) = Sum_{k=0..m-1} C(2k+n-1,2k) otherwise.

A225006 Number of n X n 0..1 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

1, 2, 9, 50, 295, 1792, 11088, 69498, 439791, 2803658, 17978389, 115837592, 749321716, 4863369656, 31655226108, 206549749930, 1350638103791, 8848643946550, 58069093513635, 381650672631330, 2511733593767295, 16550500379912640, 109176697072162080
Offset: 0

Views

Author

R. H. Hardin, Apr 23 2013

Keywords

Comments

Diagonal of A225010.
Number of unimodal maps [1..n]->[1..n+1], see example. - Joerg Arndt, May 10 2013

Examples

			Some solutions for n=3
..0..1..1....0..1..0....0..0..1....0..0..0....0..0..0....0..0..0....0..0..0
..1..1..1....0..1..0....1..1..1....0..0..0....0..0..0....0..1..0....0..0..1
..1..1..1....0..1..1....1..1..1....0..0..1....0..1..0....1..1..1....0..1..1
From _Joerg Arndt_, May 10 2013: (Start)
The a(2) = 9 unimodal maps [1,2]->[1,2,3] are
01:  [ 1 1 ]
02:  [ 1 2 ]
03:  [ 1 3 ]
04:  [ 2 1 ]
05:  [ 2 2 ]
06:  [ 2 3 ]
07:  [ 3 1 ]
08:  [ 3 2 ]
09:  [ 3 3 ]
(End)
		

Crossrefs

Cf. A088536 (unimodal maps [1..n]->[1..n]).

Programs

  • Mathematica
    a[n_] := Sum[Binomial[2d+n-1, n-1], {d, 0, n}]; Array[a, 30] (* Jean-François Alcover, Feb 17 2016, after Max Alekseyev *)
  • PARI
    { a(n) = polcoeff( (1+x+O(x^(2*n+1)))^(-n-1)/(1-x), 2*n) }

Formula

From Vaclav Kotesovec, May 22 2013: (Start)
Empirical: 4*n*(2*n-1)*(5*n-7)*a(n) = 2*(145*n^3 - 343*n^2 + 235*n - 48)*a(n-1) - 3*(3*n-4)*(3*n-2)*(5*n-2)*a(n-2).
a(n) ~ 3^(3*n+3/2)/(5*2^(2*n+1)*sqrt(Pi*n)). (End)
a(n) = A261668(n)+1.
a(n) = Sum_{d=0..n} binomial(2d+n-1,n-1). Also, a(n) is the coefficient of x^(2n) in (1+x)^(-n-1)/(1-x). - Max Alekseyev, Sep 14 2015
It appears that a(n) = Sum_{k = 0..2*n} (-1)^k*binomial(n+k,k). - Peter Bala, Oct 08 2021
From Seiichi Manyama, Apr 06 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n-2*k-1,n-2*k).
a(n) = [x^n] 1/((1+x^2) * (1-x)^(2*n)). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 04 2017

A226031 Number A(n,k) of unimodal functions f:[n]->[k*n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 16, 22, 0, 1, 4, 36, 161, 130, 0, 1, 5, 64, 525, 1716, 791, 0, 1, 6, 100, 1222, 8086, 18832, 4900, 0, 1, 7, 144, 2360, 24616, 128248, 210574, 30738, 0, 1, 8, 196, 4047, 58730, 510664, 2072862, 2385644, 194634, 0
Offset: 0

Views

Author

Alois P. Heinz, May 23 2013

Keywords

Examples

			Square array A(n,k) begins:
  1,   1,     1,      1,      1,       1, ...
  0,   1,     2,      3,      4,       5, ...
  0,   4,    16,     36,     64,     100, ...
  0,  22,   161,    525,   1222,    2360, ...
  0, 130,  1716,   8086,  24616,   58730, ...
  0, 791, 18832, 128248, 510664, 1505205, ...
		

Crossrefs

Columns k=0-2 give: A000007, A088536, A226012.
Rows n=0-2 give: A000012, A001477, A016742.
Main diagonal gives: A227402.
Cf. A071920.

Programs

  • Maple
    A:= (n, k)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..k*n-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    A[n_, k_] := If[n==0, 1, Sum[Binomial[n + 2j - 1, 2j], {j, 0, k n - 1}]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k*n-1} C(n+2*j-1,2*j), A(0,k) = 1.
A(n,k) = A071921(n,k*n).
Showing 1-5 of 5 results.