A223718
Number of unimodal functions [1..n]->[0..2].
Original entry on oeis.org
1, 3, 9, 22, 46, 86, 148, 239, 367, 541, 771, 1068, 1444, 1912, 2486, 3181, 4013, 4999, 6157, 7506, 9066, 10858, 12904, 15227, 17851, 20801, 24103, 27784, 31872, 36396, 41386, 46873, 52889, 59467, 66641, 74446, 82918, 92094, 102012, 112711, 124231
Offset: 0
Some solutions for n=3
..1....2....0....1....0....2....1....2....0....2....0....1....0....1....0....1
..2....1....1....1....0....0....0....1....0....2....2....1....1....2....2....2
..0....1....0....0....1....0....0....0....2....2....1....1....1....2....0....1
From _Joerg Arndt_, Dec 27 2023: (Start)
The a(3) = 22 such functions are (dots for zeros)
1: [ . . . ]
2: [ . . 1 ]
3: [ . . 2 ]
4: [ . 1 . ]
5: [ . 1 1 ]
6: [ . 1 2 ]
7: [ . 2 . ]
8: [ . 2 1 ]
9: [ . 2 2 ]
10: [ 1 . . ]
11: [ 1 1 . ]
12: [ 1 1 1 ]
13: [ 1 1 2 ]
14: [ 1 2 . ]
15: [ 1 2 1 ]
16: [ 1 2 2 ]
17: [ 2 . . ]
18: [ 2 1 . ]
19: [ 2 1 1 ]
20: [ 2 2 . ]
21: [ 2 2 1 ]
22: [ 2 2 2 ]
(End)
Cf.
A000124 (unimodal functions [1..n]->[0..1]),
A088536 ([1..n] -> [1..n]).
A071920
Square array giving number of unimodal functions [n]->[m] for n>=0, m>=0, with a(0,m)=0 for all m>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 9, 7, 1, 0, 0, 5, 16, 22, 11, 1, 0, 0, 6, 25, 50, 46, 16, 1, 0, 0, 7, 36, 95, 130, 86, 22, 1, 0, 0, 8, 49, 161, 295, 296, 148, 29, 1, 0, 0, 9, 64, 252, 581, 791, 610, 239, 37, 1, 0
Offset: 0
Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 14 2002
Square array a(n,m) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
0, 1, 4, 9, 16, 25, 36, 49, 64, ...
0, 1, 7, 22, 50, 95, 161, 252, 372, ...
0, 1, 11, 46, 130, 295, 581, 1036, 1716, ...
0, 1, 16, 86, 296, 791, 1792, 3612, 6672, ...
0, 1, 22, 148, 610, 1897, 4900, 11088, 22716, ...
0, 1, 29, 239, 1163, 4166, 12174, 30738, 69498, ...
0, 1, 37, 367, 2083, 8518, 27966, 78354, 194634, ...
-
a:= (n, m)-> `if`(n=0, 0, add(binomial(n+2*j-1, 2*j), j=0..m-1)):
seq(seq(a(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Sep 21 2013
-
a[n_, m_] := Sum[Binomial[n+2*k-1, 2*k], {k, 0, m-1}]; a[0, ] = 0; Table[a[n-m, m], {n, 0, 10}, {m, n, 0, -1}] // Flatten (* _Jean-François Alcover, Feb 25 2015 *)
A071921
Square array giving number of unimodal functions [n]->[m] for n>=0, m>=0, with a(0,m)=1 by definition, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 7, 1, 0, 1, 5, 16, 22, 11, 1, 0, 1, 6, 25, 50, 46, 16, 1, 0, 1, 7, 36, 95, 130, 86, 22, 1, 0, 1, 8, 49, 161, 295, 296, 148, 29, 1, 0, 1, 9, 64, 252, 581, 791, 610, 239, 37, 1, 0
Offset: 0
Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 14 2002
Square array a(n,m) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
0, 1, 4, 9, 16, 25, 36, 49, 64, ...
0, 1, 7, 22, 50, 95, 161, 252, 372, ...
0, 1, 11, 46, 130, 295, 581, 1036, 1716, ...
0, 1, 16, 86, 296, 791, 1792, 3612, 6672, ...
0, 1, 22, 148, 610, 1897, 4900, 11088, 22716, ...
0, 1, 29, 239, 1163, 4166, 12174, 30738, 69498, ...
0, 1, 37, 367, 2083, 8518, 27966, 78354, 194634, ...
Main diagonal gives
A088536 (for n>=1).
-
a:= (n, m)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..m-1)):
seq(seq(a(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 22 2013
-
a[0, 0] = 1; a[n_, m_] := Sum[Binomial[2k+n-1, 2k], {k, 0, m-1}]; Table[a[n - m, m], {n, 0, 12}, {m, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 11 2015 *)
A225006
Number of n X n 0..1 arrays with rows unimodal and columns nondecreasing.
Original entry on oeis.org
1, 2, 9, 50, 295, 1792, 11088, 69498, 439791, 2803658, 17978389, 115837592, 749321716, 4863369656, 31655226108, 206549749930, 1350638103791, 8848643946550, 58069093513635, 381650672631330, 2511733593767295, 16550500379912640, 109176697072162080
Offset: 0
Some solutions for n=3
..0..1..1....0..1..0....0..0..1....0..0..0....0..0..0....0..0..0....0..0..0
..1..1..1....0..1..0....1..1..1....0..0..0....0..0..0....0..1..0....0..0..1
..1..1..1....0..1..1....1..1..1....0..0..1....0..1..0....1..1..1....0..1..1
From _Joerg Arndt_, May 10 2013: (Start)
The a(2) = 9 unimodal maps [1,2]->[1,2,3] are
01: [ 1 1 ]
02: [ 1 2 ]
03: [ 1 3 ]
04: [ 2 1 ]
05: [ 2 2 ]
06: [ 2 3 ]
07: [ 3 1 ]
08: [ 3 2 ]
09: [ 3 3 ]
(End)
Cf.
A088536 (unimodal maps [1..n]->[1..n]).
-
a[n_] := Sum[Binomial[2d+n-1, n-1], {d, 0, n}]; Array[a, 30] (* Jean-François Alcover, Feb 17 2016, after Max Alekseyev *)
-
{ a(n) = polcoeff( (1+x+O(x^(2*n+1)))^(-n-1)/(1-x), 2*n) }
A226031
Number A(n,k) of unimodal functions f:[n]->[k*n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 16, 22, 0, 1, 4, 36, 161, 130, 0, 1, 5, 64, 525, 1716, 791, 0, 1, 6, 100, 1222, 8086, 18832, 4900, 0, 1, 7, 144, 2360, 24616, 128248, 210574, 30738, 0, 1, 8, 196, 4047, 58730, 510664, 2072862, 2385644, 194634, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 4, 16, 36, 64, 100, ...
0, 22, 161, 525, 1222, 2360, ...
0, 130, 1716, 8086, 24616, 58730, ...
0, 791, 18832, 128248, 510664, 1505205, ...
-
A:= (n, k)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..k*n-1)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
A[n_, k_] := If[n==0, 1, Sum[Binomial[n + 2j - 1, 2j], {j, 0, k n - 1}]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments