cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A088536 Number of unimodal functions [1..n]->[1..n].

Original entry on oeis.org

1, 4, 22, 130, 791, 4900, 30738, 194634, 1241383, 7963384, 51325352, 332095816, 2155894508, 14035149748, 91593941402, 599021799242, 3924954250975, 25760310654100, 169322682857430, 1114452091832130, 7344021912458295, 48448974411575280, 319942093205166840, 2114743632331515480
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 16 2003

Keywords

Examples

			From _Joerg Arndt_, May 10 2013: (Start)
The a(3) = 22 unimodal maps [1,2,3]->[1,2,3] are
01:  [ 1 1 1 ]
02:  [ 1 1 2 ]
03:  [ 1 1 3 ]
04:  [ 1 2 1 ]
05:  [ 1 2 2 ]
06:  [ 1 2 3 ]
07:  [ 1 3 1 ]
08:  [ 1 3 2 ]
09:  [ 1 3 3 ]
10:  [ 2 1 1 ]
11:  [ 2 2 1 ]
12:  [ 2 2 2 ]
13:  [ 2 2 3 ]
14:  [ 2 3 1 ]
15:  [ 2 3 2 ]
16:  [ 2 3 3 ]
17:  [ 3 1 1 ]
18:  [ 3 2 1 ]
19:  [ 3 2 2 ]
20:  [ 3 3 1 ]
21:  [ 3 3 2 ]
22:  [ 3 3 3 ]
(End)
		

Crossrefs

Main diagonal of A071920.
Cf. A225006 (unimodal maps [1..n]->[1..n+1]).

Programs

  • Mathematica
    Table[Sum[Binomial[2k+n-1,2k],{k,0,n-1}],{n,1,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    a(n) = sum(k=0,n-1, binomial(2*k+n-1,2*k)); \\ Joerg Arndt, May 10 2013

Formula

a(n) = Sum_{k=0..n-1} binomial(2k+n-1,2k).
Recurrence: 36*n*(2*n-3)*a(n) = 2*(269*n^2-549*n+235)*a(n-1) - (359*n^2-1062*n+907)*a(n-2) + 6*(3*n-8)*(3*n-7)*a(n-3). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 27^n/(5*2^(2*n-1)*sqrt(3*Pi*n)). - Vaclav Kotesovec, Oct 14 2012
It appears that a(n) = Sum_{k = 0..2*n-2} (-1)^k*binomial(n+k,k). - Peter Bala, Oct 08 2021

Extensions

More terms from David Wasserman, Aug 09 2005

A261668 Number of admissible words of Type G arising in study of q-analogs of multiple zeta values.

Original entry on oeis.org

1, 8, 49, 294, 1791, 11087, 69497, 439790, 2803657, 17978388, 115837591, 749321715, 4863369655, 31655226107, 206549749929, 1350638103790, 8848643946549, 58069093513634, 381650672631329, 2511733593767294, 16550500379912639, 109176697072162079, 720921085149563159
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2015

Keywords

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(t>n or t<0, 0,
          `if`(n=0, 1, add(j*b(n-j, t-1), j=1..n)))
        end:
    a:= n-> add(add(b(d+k-1, d), d=1..n), k=1..n):
    seq(a(n), n=1..25);  # Alois P. Heinz, Sep 06 2015
  • Mathematica
    a[n_] := Sum[Binomial[2d+n-1, n-1], {d, 1, n}]; Array[a, 25] (* Jean-François Alcover, Feb 17 2016, after Max Alekseyev *)
  • PARI
    a(n) = polcoeff(( (1+x+O(x^(2*n+1)))^(-n-1)-1)/(1-x), 2*n)

Formula

a(n) = A225006(n)-1.
a(n) = Sum_{1<=d,k<=n} Sum_{x1+···+xd=d+k-1 and x1,...,xd>=1} x1*x2*...*xd. See Proposition 10.8 p. 28 of Zhao link. - Michel Marcus, Sep 06 2015
a(n) = Sum_{d=1..n} binomial(2d+n-1,n-1). Also, a(n) is the coefficient of x^(2n) in ((1+x)^(-n-1)-1)/(1-x), or the coefficient of x^n in ((1+x)^(3n+1)-(1+x)^(n+1))/(2+x). - Max Alekseyev, Sep 14 2015

Extensions

More terms from Alois P. Heinz, Sep 06 2015

A371815 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(4*n-2*k-1,n-2*k).

Original entry on oeis.org

1, 3, 20, 156, 1288, 10963, 95132, 836650, 7430956, 66501696, 598720080, 5416612336, 49201807276, 448442474938, 4099103160424, 37562606691526, 344959939645980, 3174051631201636, 29254814741949680, 270047153053464712, 2496167217049673468
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(4*n-2*k-1, n-2*k));

Formula

a(n) = [x^n] 1/((1+x^2) * (1-x)^(3*n)).
a(n) = binomial(4*n-1, n)*hypergeom([1, (1-n)/2, -n/2], [1/2-2*n, 1-2*n], -1). - Stefano Spezia, Apr 07 2024
Showing 1-3 of 3 results.