cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A096724 Duplicate of A088553.

Original entry on oeis.org

2, 5, 13, 41, 1093, 797161, 21523361, 926510094425921
Offset: 1

Views

Author

Keywords

A096723 Numbers n such that 3^n has the form 2p-+1 where p is prime.

Original entry on oeis.org

1, 2, 3, 4, 7, 13, 16, 32, 64, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551, 36913, 43063, 49681, 57917, 483611, 877843, 2215303, 2704981, 3598867
Offset: 1

Views

Author

Lekraj Beedassy, Jul 05 2004

Keywords

Comments

For the corresponding primes p see A088553.
For n > 1, numbers n such that (3^n + (-1)^n)/2 is prime. - Thomas Ordowski, Dec 26 2016

Crossrefs

Programs

  • Mathematica
    Select[Range[4200],Or@@PrimeQ[(3^#+{1,-1})/2]&] (* Harvey P. Dale, Mar 05 2013 *)

Extensions

More terms from Ray Chandler, Jul 09 2004
a(25)-a(27) (from A028491 and A171381) from Tyler Busby, Mar 22 2023

A111009 Starting with the fraction 1/1, the prime numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 4 times bottom to get the new top.

Original entry on oeis.org

5, 13, 41, 1093, 797161, 21523361, 926510094425921, 1716841910146256242328924544641, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013
Offset: 1

Views

Author

Cino Hilliard, Oct 02 2005

Keywords

Comments

Or, A046717(n) is prime.
Is this sequence infinite?

References

  • Prime Obsession, John Derbyshire, Joseph Henry Press, April 2004, p 16.

Crossrefs

Cf. A088553. [From R. J. Mathar, Aug 18 2008]

Programs

  • Mathematica
    Select[NestList[(Numerator[#]+4*Denominator[#])/(Numerator[#]+Denominator[#])&,1/1,200]//Numerator,PrimeQ] (* Harvey P. Dale, Jan 04 2024 *)
  • PARI
    primenum(n,k,typ) = \ k=mult,typ=1 num,2 denom. ouyput prime num or denom. { local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v),print1(v","); ) ); print(); print(a/b+.) }

Formula

Given c(0)=1, b(0)=1 then for i=1, 2, .. c(i)/b(i) = (c(i-1)+4*b(i-1)) /(c(i-1) + b(i-1)).
A046717 INTERSECT A000040. [From R. J. Mathar, Aug 18 2008]

Extensions

Edited by N. J. A. Sloane, Aug 23 2008
Showing 1-3 of 3 results.