A088912 a(n) = smallest m such that sigma(m) = (n+1/2)*m.
2, 24, 4320, 8910720, 17116004505600, 170974031122008628879954060917200710847692800, 12749472205565550032020636281352368036406720997031277595140988449695952806020854579200000
Offset: 1
Examples
a(2)=24 because 1+2+3+4+6+8+12+24=2.5*24 and 24 is the earliest m such that sigma(m)=2.5*m.
References
- Guy Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.
Links
- G. P. Michon, Multiplicative functions: Abundancy = sigma(n)/n
- G. P. Michon, Multiperfect and hemiperfect integers
- G. P. Michon and M. Marcus, Hemiperfect numbers of abundancy 11/2
- G. P. Michon and M. Marcus, Hemiperfect numbers of abundancy 13/2
- G. P. Michon and M. Marcus, Hemiperfect numbers of abundancy 15/2
- G. P. Michon and M. Marcus, Hemiperfect numbers of abundancy 17/2
- Walter Nissen, Abundancy : Some Resources
- Wikipedia, Hemiperfect number
- Wikipedia, Riemann hypothesis
Crossrefs
Programs
-
Mathematica
a[n_] := (For[m=1, DivisorSigma[1, m]!=(n+1/2)m, m++ ];m); Do[Print[a[n]], {n, 4}]
Extensions
a(5)-a(6) from Robert Gerbicz, Apr 19 2009
Cross-references from Gerard P. Michon, Jun 10 2009
Edited by M. F. Hasler, Mar 17 2013
a(7) from Michel Marcus confirmed and added by Max Alekseyev, Jun 05 2025
Comments