A089482 Number of real {0,1}-matrices having permanent = 1.
1, 1, 6, 150, 13032, 3513720, 2722682160, 5739447495600, 31598877919109760, 440333998013384657280, 15150599165671354541318400, 1261508968034974650352062240000, 250009928097136435131869478983500800, 116299581308873767293693697630883742796800
Offset: 0
Keywords
Examples
a(2) = 6 because there are 6 matrices ((1,0),(0,1)), ((0,1),(1,0)), ((0,1),(1,1)), ((1,0),(1,1)), ((1,1),(0,1)), ((1,1),(1,0)) with permanent = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..73
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add((-1)^(k+1)* binomial(n, k)*2^(k*(n-k))*b(n-k), k=1..n)) end: a:= n-> n!*b(n): seq(a(n), n=0..14); # Alois P. Heinz, Jun 27 2023
-
Mathematica
A003024[n_] := A003024[n] = If[n == 0 || n == 1, 1, Sum[-(-1)^k* Binomial[n, k]*2^(k*(n - k))*A003024[n - k], {k, 1, n}]]; a[n_] := n! * A003024[n]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Sep 20 2024 *)
Formula
a(n) = n! * A003024(n). - Vladeta Jovovic, Oct 26 2009
Extensions
a(6) from Gordon F. Royle
More terms from Vladeta Jovovic, Oct 26 2009
a(0)=1 prepended by Alois P. Heinz, Jun 27 2023
Comments