A088119 Sequence of primes p(n) such that 2*p(n)+3, 2*p(n+1)+3, 2*p(n+2)+3 are consecutive primes, where p(i) denotes the i-th prime.
193, 223, 1607, 15733, 39877, 63647, 65407, 68207, 72673, 84299, 89977, 96787, 99137, 102533, 103687, 115837, 127807, 143567, 150373, 191999, 204793, 257867, 324217, 344957, 375253, 412033, 427433, 491149, 551717, 595117, 642527, 646897
Offset: 1
Keywords
Examples
p(44) = 193, 2*193 + 3 = 389 = p(77); p(45) = 197, 2*197 + 3 = 397 = p(78); p(46) = 199, 2*199 + 3 = 401 = p(79).
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
Programs
-
Maple
r:= 1: q:= 2: p:= 3: count:= 0: while count < 100 do r:= q; q:= p; p:= nextprime(p); if isprime(2*r+3) and nextprime(2*r+3)=2*q+3 and nextprime(2*q+3)=2*p+3 then count:= count+1; A[count]:= r; fi od:seq(A[i],i=1..100); # Robert Israel, Jul 01 2018
Extensions
More terms from Ray Chandler, Nov 03 2003
Offset corrected by Robert Israel, Jul 01 2018