cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A181981 Duplicate of A089637.

Original entry on oeis.org

3, 17, 41, 107, 71, 2267, 1091, 461, 1319, 1151, 347, 5741, 2999, 5279, 10139, 1487, 9461, 881, 659, 13007, 9041, 15359, 8627, 28751, 83717, 13397, 18539, 14627, 44771, 54011, 60257, 59669, 142157, 77711, 61559, 178931, 26261, 122867, 293261, 89069, 24419
Offset: 0

Views

Author

Keywords

A065044 Start of the first run of exactly n consecutive primes, none of which are twin primes.

Original entry on oeis.org

2, 47, 113, 79, 2273, 1097, 467, 1327, 1163, 353, 5749, 3011, 5297, 10151, 1493, 9467, 887, 673, 13033, 9049, 15373, 8641, 28759, 83737, 13411, 18553, 14633, 44777, 54037, 60271, 59693, 142169, 77719, 61583, 178939, 26267, 122887, 293269
Offset: 1

Views

Author

Jud McCranie, Nov 05 2001

Keywords

Comments

Viggo Brun proved that there exist arbitrarily long sequences of primes which are not twin primes (Ribenboim, page 261).

Examples

			79 is the first prime in a run of four consecutive primes (79, 83, 89, 97), none of which are twin primes, and the next larger and smaller primes are each members of a twin pair, so a(4)=79.
		

References

  • Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996.

Crossrefs

Programs

  • PARI
    nextTwin(t)= { until (isprime(t + 2), t=nextprime(t + 3)); return(t) } { default(primelimit, 4294965247); for (n=1, 100, u=2; until((primepi(u) - primepi(t) - 2) == n, t=u; u=nextTwin(t)); if (n==1, t=-3); write("b065044.txt", n, " ", nextprime(t + 3)) ) } \\ Harry J. Smith, Oct 04 2009

Formula

a(n) = A151800(A089637(n) + 2), for n > 1. - Amiram Eldar, Jan 15 2020

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Oct 04 2009

A182048 Numbers n such that 16n^2-2n-1 and 16n^2+2n-1 are both primes.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 13, 19, 29, 32, 36, 62, 63, 70, 75, 78, 85, 93, 96, 102, 107, 109, 119, 123, 128, 145, 158, 164, 174, 177, 190, 192, 197, 219, 241, 247, 252, 280, 284, 299, 304, 318, 335, 340, 344, 354, 361, 374, 377, 382, 385, 387, 427, 434, 439, 440
Offset: 1

Views

Author

Gerasimov Sergey, Apr 08 2012

Keywords

Examples

			a(1)=1 because 16*1^2-2*1-1=13 is prime and 16*1^2+2*1-1=17 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], PrimeQ[16 #^2 - 2 # - 1] && PrimeQ[16 #^2 + 2 # - 1] &] (* T. D. Noe, Apr 16 2012 *)
    Select[Range[500],AllTrue[16#^2-1+{2#,-2#},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 01 2018 *)

Extensions

Corrected and extended by T. D. Noe, Apr 16 2012

A214450 Smallest prime p such that n primes exist between the prime triple (p, p+2, p+6) and the next prime triple.

Original entry on oeis.org

5, 857, 311, 17, 31391, 3461, 1427, 12917, 1997, 4517, 41, 20747, 107, 1871, 1487, 4637, 2081, 347, 7877, 23057, 80777, 1091, 18041, 641, 461, 5231, 21017, 881, 4967, 45821, 1607, 15731, 165311, 17027, 35591, 26261, 11777, 8537, 64151, 101111, 82757, 23741
Offset: 0

Views

Author

Michel Lagneau, Jul 18 2012

Keywords

Examples

			a(3)= 17 because there exists 3 primes 29, 31 and 37 are between (17, 19,23) and (41,43,47).
		

Crossrefs

Programs

  • Maple
    A214450 := proc(n)
    local j, hi, lo ;
    if n = 0 then
    3;
    else
    for j from 1 do
    hi := numtheory[pi]( A022004 (j+1)) ;
    lo := numtheory[pi]( A098412 (j)) ;
    if hi-lo = n+1 then
    return A022004 (j);
    end if;
    end do:
    end if;
    end proc: # [Program from R. J. Mathar, adapted for this sequence (see A089637)].
Showing 1-4 of 4 results.