Original entry on oeis.org
1264460, 3379784, 6164364, 11102500, 18271604, 36320580, 54976960, 83135125, 129857825, 210986457, 385264277, 594788487, 924792067, 1423007483, 2659409715, 4458691045, 6846467595, 9563962830, 12443660134, 16149431959
Offset: 1
a(13) = 1264460 + 2115324 + 2784580 + 4938136 + 7169104 + 18048976 + 18656380 + 28158165 + 46722700 + 81128632 + 174277820 + 209524210 + 330003580 = 924792067 is prime.
A319902
Unitary sociable numbers of order 4.
Original entry on oeis.org
263820, 263940, 280380, 280500, 395730, 395910, 420570, 420750, 172459210, 209524210, 218628662, 218725430, 230143790, 231439570, 246667790, 272130250, 384121920, 384296640, 408233280, 408408000
Offset: 1
Cf.
A063919 (sum of proper unitary divisors).
Cf.
A090615 (least member of sociable quadruples).
-
f[n_] := f[n] = Module[{s = 0}, s = Total[Select[Divisors[n], GCD[#, n/#] == 1 &]]; Return[s - n]]; isok1[n_] := isok1[n] = Quiet[Check[f[n] == n, 0]]; isok2[n_] := isok2[n] = Quiet[Check[f[f[n]] == n, 0]]; isok4[n_] := isok4[n] = Quiet[Check[f[f[f[f[n]]]] == n, 0]]; isok[n_] := isok[n] = isok4[n] && Not[isok1[n]] && Not[isok2[n]]; Monitor[Position[Table[isok[n], {n, 1, 408408000}], True], n] (* Robert P. P. McKone, Aug 24 2023 *)
-
f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
isok4(n) = iferr(f(f(f(f(n)))) == n, E, 0);
isok2(n) = iferr(f(f(n)) == n, E, 0);
isok1(n) = iferr(f(n) == n, E, 0);
isok(n) = isok4(n) && !isok1(n) && !isok2(n);
A222977
Smallest member of sociable quadruples with signature: abundant, deficient, abundant, deficient.
Original entry on oeis.org
18048976, 46722700, 4424606020, 73636082872, 88585861815, 90568599176, 518833084192, 1138168194296, 5793575538465
Offset: 1
The first quadruple of this type is: 18048976, 20100368, 18914992, 19252208, that are respectively abundant, deficient, abundant, deficient.
A072892
The 4-cycle of the n => sigma(n)-n process. sigma(n) is the sum of divisors of n. (A000203).
Original entry on oeis.org
1264460, 1547860, 1727636, 1305184, 1264460
Offset: 1
- Ross Honsberger, Ingenuity in Mathematics, Mathematical Association of America, 1970.
-
NestWhileList[DivisorSigma[1, #] - # &, 1264460, UnsameQ, All] (* Amiram Eldar, Mar 24 2024 *)
A222975
Smallest member of sociable quadruples with signature: abundant, abundant, deficient, deficient.
Original entry on oeis.org
1264460, 2115324, 2784580, 7169104, 18656380, 28158165, 81128632, 174277820, 498215416, 1236402232, 1799281330, 2387776550, 2717495235, 2879697304, 15837081520, 17616303220, 91411869465, 111375706442, 661126361272, 741158497112, 1045805730255, 1092162882824
Offset: 1
The first quadruple of this type is: 1264460, 1547860, 1727636, 1305184, that are respectively abundant, abundant, deficient, deficient.
A222976
Smallest member of sociable quadruples with signature: abundant, deficient, deficient, deficient.
Original entry on oeis.org
4938136, 209524210, 4823923384, 8653956136, 21669628904, 44379752648, 3681459083984, 4553100850815
Offset: 1
The first quadruple of this type is: 4938136, 5753864, 5504056, 5423384, that are respectively abundant, deficient, deficient, deficient.
A222978
Smallest member of sociable quadruples with signature: abundant, abundant, abundant, deficient.
Original entry on oeis.org
330003580, 3705771825, 5373457070
Offset: 1
The first quadruple of this type is: 330003580, 363003980, 399304420, 440004764 that are respectively abundant, abundant, abundant, deficient.
A292217
Conjectured list of numbers in increasing order that belong to sociable cycles of length greater than 2 in which the sum of the cycle is divisible by 10.
Original entry on oeis.org
1264460, 1305184, 1547860, 1727636, 4938136, 5423384, 5504056, 5753864, 18656380, 20522060, 24289964, 28158165, 28630036, 29902635, 29971755, 30853845, 81128632, 91314968, 91401368, 96389032, 209524210, 230143790, 231439570, 246667790, 498215416, 506040584, 510137384, 583014136
Offset: 1
The sum of 1264460, 1547860, 1727636 and 1305184 is divisible by ten, thus this sociable number cycle belongs to the sequence. On the other hand, the 12496, 14288, 15472, 14536, 14264 sociable number cycle does not qualify since its sum is 71506.
- R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1994, pp. 62 - 63.
- Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, Chappman and HALL/CRC, 2003, pp. 2747 - 2748.
- Song Y. Yan, Perfect, Amicable and Sociable Numbers. A Computation Approach, World Scientific 1996, pp. 34 - 38.
- Zoltan Galantai, Table of n, a(n) for n = 1..36
- Zoltan Galantai, List of known sociable number cycles where the sums of the cycles is divisible by 10.
- Shyam Sunder Gupta, Perfect, Multiply Perfect, and Sociable Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 6, 185-207.
- David Moews, A list of currently known aliquot cycles of length greater than 2 [This list is not known to be complete.]
- Eric Weisstein's World of Mathematics, Sociable Numbers
Changed definition and added comment to point out that this sequence is only conjectural. -
N. J. A. Sloane, Sep 17 2021
A319915
Smallest member of bi-unitary sociable quadruples.
Original entry on oeis.org
162, 1026, 1620, 10098, 10260, 41800, 51282, 100980, 107920, 512820, 1479006, 4612720, 4938136, 14790060, 14800240, 23168840, 28158165, 32440716, 55204500, 81128632, 84392560, 88886448, 209524210, 283604220, 325903500, 498215416, 572062304, 881697520
Offset: 1
162 is in the sequence since the iterations of the sum of bi-unitary proper divisors function (A188999(n) - n) are cyclic with a period of 4: 162, 174, 186, 198, 162, ... and 162 is the smallest member of the quadruple.
-
fun[p_, e_]:=If[Mod[e, 2]==1, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)];
bs[n_] := If[n==1, 1, Times @@ (fun @@@ FactorInteger[n])]-n;seq[n_]:=NestList [bs, n,4][[2;;5]] ;aQ[n_] := Module[ {s=seq[n]}, n==Min[s] && Count[s,n]==1]; Do[If[aQ[n],Print[n]],{n,1,10^9}]
-
fn(n) = {if (n==1, 1, f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f) - n;);}
isok(n) = my(v = vector(5)); v[1] = n; for(k=2, 5, v[k] = fn(v[k-1])); (v[5] == n) && (vecmin(v) == n) && (#vecsort(v,,8)==4); \\ Michel Marcus, Oct 02 2018
-
is(n) = my(c = n); for(i = 1, 3, c = fn(c); if(c <= n, return(0))); c = fn(c); c == n \\ uses Michel Marcus' fn David A. Corneth, Oct 02 2018
A073032
A 4-cycle of the k => sigma(k)-k process, where sigma(k) is the sum of divisors of k (A000203).
Original entry on oeis.org
18048976, 20100368, 18914992, 19252208, 18048976, 20100368, 18914992, 19252208, 18048976, 20100368, 18914992, 19252208, 18048976, 20100368, 18914992, 19252208, 18048976, 20100368, 18914992, 19252208, 18048976, 20100368, 18914992, 19252208, 18048976
Offset: 1
Showing 1-10 of 15 results.
Comments