A091067 Numbers whose odd part is of the form 4k+3.
3, 6, 7, 11, 12, 14, 15, 19, 22, 23, 24, 27, 28, 30, 31, 35, 38, 39, 43, 44, 46, 47, 48, 51, 54, 55, 56, 59, 60, 62, 63, 67, 70, 71, 75, 76, 78, 79, 83, 86, 87, 88, 91, 92, 94, 95, 96, 99, 102, 103, 107, 108, 110, 111, 112, 115, 118, 119, 120, 123, 124, 126, 127, 131
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and J. Shallit, On three conjectures of P. Barry, arxiv preprint arXiv:2006.04708 [math.NT], June 8 2020.
- Paul Barry, Some observations on the Rueppel sequence and associated Hankel determinants, arXiv:2005.04066 [math.CO], 2020.
- Kevin Ryde, Iterations of the Dragon Curve, see index TurnRight, with a(n) = TurnRight(n-1).
Crossrefs
Essentially one less than A060833.
Characteristic function: A038189.
Complement of A091072.
First differences are in A106836 (from its second term onward).
Sequence A246590 gives the even terms.
Gives the positions of records (after zero) for A255070 (equally, the position of the first n there).
Cf. A106837 (gives n such that both n and n+1 are terms of this sequence).
Cf. A098502 (gives n such that both n and n+2 are, but n+1 is not in this sequence).
Programs
-
Haskell
import Data.List (elemIndices) a091067 n = a091067_list !! (n-1) a091067_list = map (+ 1) $ elemIndices 1 a014707_list -- Reinhard Zumkeller, Sep 28 2011 (Scheme, with Antti Karttunen's IntSeq-library, two versions) (define A091067 (MATCHING-POS 1 1 (COMPOSE even? A003602))) (define A091067 (NONZERO-POS 1 0 A038189)) ;; Antti Karttunen, Feb 20 2015
-
Mathematica
Select[Range[150], Mod[# / 2^IntegerExponent[#, 2], 4] == 3 &] (* Amiram Eldar, Aug 31 2024 *)
-
PARI
for(n=1,200,if(((n/2^valuation(n,2)-1)/2)%2,print1(n",")))
-
PARI
{a(n) = local(m, c); if( n<1, 0, c=0; m=1; while( c
Michael Somos, Sep 22 2005 */ -
PARI
is_A091067(n)=bittest(n,valuation(n,2)+1) \\ M. F. Hasler, Aug 06 2015
-
PARI
a(n) = my(t=1); n<<=1; forstep(i=logint(n,2),0,-1, if(bittest(n,i)==t, n++;t=!t)); n; \\ Kevin Ryde, Mar 21 2021
Formula
Other identities. For all n >= 1 it holds that:
A014707(a(n) + 1) = 1. - Reinhard Zumkeller, Sep 28 2011
A055975(a(n)) < 0. - Reinhard Zumkeller, Apr 28 2012
From Antti Karttunen, Feb 20-21 2015: (Start)
a(n) = A246590(n)/2.
a(n) = 1 + A255068(n-1). (End)
Comments