cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A091191 Primitive abundant numbers: abundant numbers (A005101) having no abundant proper divisor.

Original entry on oeis.org

12, 18, 20, 30, 42, 56, 66, 70, 78, 88, 102, 104, 114, 138, 174, 186, 196, 222, 246, 258, 272, 282, 304, 308, 318, 354, 364, 366, 368, 402, 426, 438, 464, 474, 476, 498, 532, 534, 550, 572, 582, 606, 618, 642, 644, 650, 654, 678, 748, 762, 786, 812, 822
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 27 2003

Keywords

Comments

A080224(a(n)) = 1.
This is a supersequence of the primitive abundant number sequence A071395, since many of these numbers will be positive integer multiples of the perfect numbers (A000396). - Timothy L. Tiffin, Jul 15 2016
If the terms of A071395 are removed from this sequence, then the resulting sequence will be A275082. - Timothy L. Tiffin, Jul 16 2016

Examples

			12 is a term since 1, 2, 3, 4, and 6 (the proper divisors of 12) are either deficient or perfect numbers, and thus not abundant. - _Timothy L. Tiffin_, Jul 15 2016
		

Crossrefs

Cf. A006038 (odd terms), A005101 (abundant numbers), A091192.
Cf. A027751, A071395 (subsequence), supersequence of A275082.
Cf. A294930 (characteristic function), A294890.

Programs

  • Haskell
    a091191 n = a091191_list !! (n-1)
    a091191_list = filter f [1..] where
       f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)
             where pdivs = a027751_row x
    -- Reinhard Zumkeller, Jan 31 2014
  • Maple
    isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:
    isA091191 := proc(n) local d; if isA005101(n) then for d in numtheory[divisors](n) minus {1,n} do if isA005101(d) then return false; end if; end do: return true; else false; end if; end proc:
    for n from 1 to 200 do if isA091191(n) then printf("%d\n",n) ; end if;end do: # R. J. Mathar, Mar 28 2011
  • Mathematica
    t = {}; n = 1; While[Length[t] < 100, n++; If[DivisorSigma[1, n] > 2*n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)
    Select[Range@ 840, DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &] (* Michael De Vlieger, Jul 16 2016 *)
  • PARI
    is(n)=sumdiv(n,d,sigma(d,-1)>2)==1 \\ Charles R Greathouse IV, Dec 05 2012
    

Formula

Erdős shows that a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 05 2012

A080224 Number of abundant divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 07 2003

Keywords

Comments

Number of divisors d of n with sigma(d)>2*d (sigma = A000203)
a(n)>0 iff n is abundant: a(A005101(n))>0, a(A000396(n))=0 and a(A005100(n))=0; a(A091191(n))=1; a(A091192(n))>1; a(A091193(n))=n and a(m)<>n for m < A091193(n). - Reinhard Zumkeller, Dec 27 2003

Examples

			Divisors of n=24: {1,2,3,4,6,8,12,24}, two of them are abundant: 12=A005101(1) and 24=A005101(4), therefore a(24)=2.
		

Crossrefs

Programs

Formula

a(n) + A080225(n) + A080226(n) = A000005(n).
From Antti Karttunen, Nov 14 2017: (Start)
a(n) = Sum_{d|n} A294937(d).
a(n) = A294929(n) + A294937(n).
a(n) = 1 iff A294930(n) = 1.
(End)

A337688 Numbers divisible by 2 or more primitive nondeficient numbers.

Original entry on oeis.org

60, 84, 120, 140, 168, 180, 210, 240, 252, 264, 280, 300, 312, 336, 360, 420, 440, 480, 504, 520, 528, 540, 560, 588, 600, 616, 624, 630, 660, 672, 700, 720, 728, 756, 780, 792, 816, 840, 880, 900, 912, 924, 936, 960, 980, 1008, 1020, 1040, 1050, 1056, 1080, 1092
Offset: 1

Views

Author

Keywords

Comments

A006039 lists the primitive nondeficient numbers.
The first odd term is 4725.

Examples

			Table of n, a(n) and the relevant divisors starts:
   n   a(n)   divisors in A006039
   1     60   6, 20;
   2     84   6, 28;
   3    120   6, 20;
   4    140   20, 28, 70;
   5    168   6, 28;
   6    180   6, 20;
   7    210   6, 70;
   8    240   6, 20;
   9    252   6, 28;
  10    264   6, 88;
  11    280   20, 28, 70;
  12    300   6, 20;
  13    312   6, 104;
  14    336   6, 28;
  15    360   6, 20;
  16    420   6, 20, 28, 70;
		

Crossrefs

A006039 is used to define this sequence.
Subsequence of: A091192.
A337689 is a subsequence.
A337690 is used in a formula defining this sequence.

Programs

Formula

Numbers k such that A337690(k) >= 2.
Showing 1-3 of 3 results.