cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091512 a(n) is the largest integer m such that 2^m divides (2*n)^n, i.e., the exponent of 2 in (2*n)^n.

Original entry on oeis.org

1, 4, 3, 12, 5, 12, 7, 32, 9, 20, 11, 36, 13, 28, 15, 80, 17, 36, 19, 60, 21, 44, 23, 96, 25, 52, 27, 84, 29, 60, 31, 192, 33, 68, 35, 108, 37, 76, 39, 160, 41, 84, 43, 132, 45, 92, 47, 240, 49, 100, 51, 156, 53, 108, 55, 224, 57, 116, 59, 180, 61, 124, 63
Offset: 1

Views

Author

Ralf Stephan and Labos Elemer, Jan 18 2004

Keywords

Comments

n times one more than the trailing 0's in the binary representation of n. - Ralf Stephan, Aug 22 2013

Crossrefs

Programs

  • Magma
    [n*(Valuation(n, 2)+1): n in [1..80]]; // Vincenzo Librandi, May 16 2013
    
  • Maple
    nmax:=63: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (2*n-1)*(p+1)*2^p od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 08 2013
    # second Maple program:
    a:= n-> n*padic[ordp](2*n, 2):
    seq(a(n), n=1..63);  # Alois P. Heinz, Jan 02 2024
  • Mathematica
    Table[ Part[ Flatten[ FactorInteger[(2 n)^n]], 2], {n, 1, 124}]
    Table[IntegerExponent[(2n)^n,2],{n,70}] (* Harvey P. Dale, Sep 11 2015 *)
  • PARI
    a(n)=n*(valuation(n,2)+1)
    
  • PARI
    a(n)=if(n<1,0,if(n%2==0,2*a(n/2)+n,n))
    
  • Python
    def A091512(n): return n*(n&-n).bit_length() # Chai Wah Wu, Jul 11 2022

Formula

a(n) = A007814(A000312(n)) = n*A001511(n) = A069895(n)/2.
G.f.: Sum_{k>=0} 2^k*x^2^k/(1-x^2^k)^2.
Recurrence: a(0) = 0, a(2*n) = 2*a(n) + 2*n, a(2*n+1) = 2*n+1.
Dirichlet g.f.: zeta(s-1)*2^s/(2^s-2). - Ralf Stephan, Jun 17 2007
Mobius transform of A162728, where x/(1-x)^2 = Sum_{n>=1} A162728(n)*x^n/(1+x^n). - Paul D. Hanna, Jul 12 2009
a(n) = A162728(2*n)/phi(2*n), where x/(1-x)^2 = Sum_{n>=1} A162728(n)*x^n/(1+x^n). - Paul D. Hanna, Jul 12 2009
a((2*n-1)*2^p) = (2*n-1)*(p+1)*2^p, p >= 0. Observe that a(2^p) = A001787(p+1). - Johannes W. Meijer, Feb 08 2013
Sum_{k=1..n} a(k) ~ n^2. - Amiram Eldar, Oct 22 2022
a(n) = Sum_{d divides n} d*A048298(n/d); that is, a(n) is the Dirichlet product of A048298(n) and A000027(n). - Peter Bala, Jan 02 2024