cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A143298 Decimal expansion of Gieseking's constant.

Original entry on oeis.org

1, 0, 1, 4, 9, 4, 1, 6, 0, 6, 4, 0, 9, 6, 5, 3, 6, 2, 5, 0, 2, 1, 2, 0, 2, 5, 5, 4, 2, 7, 4, 5, 2, 0, 2, 8, 5, 9, 4, 1, 6, 8, 9, 3, 0, 7, 5, 3, 0, 2, 9, 9, 7, 9, 2, 0, 1, 7, 4, 8, 9, 1, 0, 6, 7, 7, 6, 5, 9, 7, 4, 7, 6, 2, 5, 8, 2, 4, 4, 0, 2, 2, 1, 3, 6, 4, 7, 0, 3, 5, 4, 2, 2, 8, 2, 5, 6, 6, 9, 4, 9, 4, 5, 8, 6
Offset: 1

Views

Author

Eric W. Weisstein, Aug 05 2008

Keywords

Comments

The largest possible volume of a tetrahedron in hyperbolic space. Named by Adams (1998) after German mathematician Hugo Gieseking (1887 - 1915). - Amiram Eldar, Aug 14 2020

Examples

			1.0149416064096536250...
		

References

  • J. Borwein and P. Borwein, Experimental and computational mathematics: Selected writings, Perfectly Scientific Press, 2010, p. 106.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 233, 512.

Crossrefs

Programs

  • Maple
    sqrt(3)/6*(Psi(1,1/3)-2*Pi^2/3) ; evalf(%) ; # R. J. Mathar, Sep 23 2013
  • Mathematica
    N[(9 - PolyGamma[1, 2/3] + PolyGamma[1, 4/3])/(4*Sqrt[3]), 105] // RealDigits // First
  • PARI
    polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x));
    sqrt(3)/6*(polygamma(1, 1/3) - 2*Pi^2/3)
    (9 - polygamma(1, 2/3) + polygamma(1, 4/3))/(4*sqrt(3)) \\ Gheorghe Coserea, Sep 30 2018
    
  • PARI
    clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
    clausen(2, Pi/3) \\ Gheorghe Coserea, Sep 30 2018
    
  • PARI
    sqrt(3)/2 * sumpos(n=1, 1/(6*n-4)^2 + 1/(6*n-5)^2 - 1/(6*n-1)^2 - 1/(6*n-2)^2) \\ Gheorghe Coserea, Sep 30 2018

Formula

Equals (9 - PolyGamma(1, 2/3) + PolyGamma(1, 4/3))/(4*sqrt(3)).
Equals Sum_{k>0} sin(k*Pi/3)/k^2; (also equals (sqrt(3)/2)*Sum_{k>=1} -1/(6k-1)^2 - 1/(6k-2)^2 + 1/(6k-4)^2 + 1/(6k-5)^2). - Jean-François Alcover, Jun 19 2016, from the book by J. & P. Borwein.
From Amiram Eldar, Aug 14 2020: (Start)
Equals Integral_{x=0..2*Pi/3} log(2*cos(x/2)).
Equals (3*sqrt(3)/4) * (1 - Sum_{k>=0} 1/(3*k + 2)^2 + Sum_{k>=1} 1/(3*k + 1)^2) = (3*sqrt(3)/4) * Sum_{k>=1} A049347(k-1)/k^2.
Equals Pi * A244996 = Pi * log(A242710). (End)
Equals A091518/2 = A244345/5. - Hugo Pfoertner, Sep 16 2024

A247685 Decimal expansion of the integral over the square (0,1)x(0,1) of 1/((x+y)*sqrt((1-x)*(1-y))) dx dy.

Original entry on oeis.org

3, 6, 6, 3, 8, 6, 2, 3, 7, 6, 7, 0, 8, 8, 7, 6, 0, 6, 0, 2, 1, 8, 4, 1, 4, 0, 5, 9, 7, 2, 9, 5, 3, 6, 4, 4, 3, 0, 9, 6, 5, 9, 7, 4, 9, 7, 1, 2, 6, 6, 8, 8, 5, 3, 7, 0, 6, 5, 9, 9, 2, 4, 7, 8, 4, 8, 7, 0, 5, 2, 0, 7, 9, 1, 0, 5, 0, 1, 9, 0, 7, 7, 9, 1, 7, 4, 2, 6, 0, 5, 1, 7, 0, 4, 4, 6, 0, 4, 2, 4, 9, 9, 4
Offset: 1

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Comments

Also hyperbolic volume of the Whitehead link complement and (-2,3,8) pretzel link complement. This is the minimal volume attainable by a two-cusped orientable hyperbolic 3-manifold. - Jeremy Tan, Nov 17 2016

Examples

			3.663862376708876060218414059729536443096597497126688537...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 4*Catalan(R); // G. C. Greubel, Aug 25 2018
  • Maple
    evalf(4*Catalan, 130);  # Alois P. Heinz, Aug 14 2023
  • Mathematica
    RealDigits[4*Catalan, 10, 103] // First
  • PARI
    default(realprecision, 100); 4*Catalan \\ G. C. Greubel, Aug 25 2018
    
  • PARI
    lerchphi(-1, 2, 1/2) \\ Charles R Greathouse IV, Jan 30 2025
    
  • PARI
    sumalt(k=0, (-1)^k/(k+1/2)^2) \\ Charles R Greathouse IV, Jan 30 2025
    

Formula

Equals 4*Catalan.
Equals Integral_{x=0..Pi/2} log((1+cos(x))/(1-cos(x))) dx = Integral_{x=0..Pi/2} log((1+sin(x))/(1-sin(x))) dx. - Amiram Eldar, Apr 07 2022
From Amiram Eldar, Aug 14 2023: (Start)
Equals Phi(-1, 2, 1/2) = Sum_{k>=0} (-1)^k/(k+1/2)^2, where Phi is the Lerch transcendent.
Equals Integral_{x=-Pi/2..Pi/2} x/sin(x) dx. (End)

A375392 Decimal expansion of the hyperbolic volume of the link complement of the Borromean rings.

Original entry on oeis.org

7, 3, 2, 7, 7, 2, 4, 7, 5, 3, 4, 1, 7, 7, 5, 2, 1, 2, 0, 4, 3, 6, 8, 2, 8, 1, 1, 9, 4, 5, 9, 0, 7, 2, 8, 8, 6, 1, 9, 3, 1, 9, 4, 9, 9, 4, 2, 5, 3, 3, 7, 7, 0, 7, 4, 1, 3, 1, 9, 8, 4, 9, 5, 6, 9, 7, 4, 1, 0, 4, 1, 5, 8, 2, 1, 0, 0, 3, 8, 1, 5, 5, 8, 3, 4, 8, 5
Offset: 1

Views

Author

Luc Ta, Aug 21 2024

Keywords

Examples

			7.32772475341775212043682811945907288619319499425337707...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[8 * Catalan, 100]][[1]]

Formula

Equals 8*A006752 = 2*A247685.
Equals -16*Integral_{x=0..Pi/4} log|2*sin(x)| dx.
Equals 2*hyperbolic volume of the link complement of the Whitehead link.
Showing 1-3 of 3 results.