cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006752 Decimal expansion of Catalan's constant 1 - 1/9 + 1/25 - 1/49 + 1/81 - ...

Original entry on oeis.org

9, 1, 5, 9, 6, 5, 5, 9, 4, 1, 7, 7, 2, 1, 9, 0, 1, 5, 0, 5, 4, 6, 0, 3, 5, 1, 4, 9, 3, 2, 3, 8, 4, 1, 1, 0, 7, 7, 4, 1, 4, 9, 3, 7, 4, 2, 8, 1, 6, 7, 2, 1, 3, 4, 2, 6, 6, 4, 9, 8, 1, 1, 9, 6, 2, 1, 7, 6, 3, 0, 1, 9, 7, 7, 6, 2, 5, 4, 7, 6, 9, 4, 7, 9, 3, 5, 6, 5, 1, 2, 9, 2, 6, 1, 1, 5, 1, 0, 6, 2, 4, 8, 5, 7, 4
Offset: 0

Views

Author

Keywords

Comments

Usually denoted by G.
With the k-th appended term being 2*3*...*(2+k-2)*2^k*(2^k-1)*Bern(k) / (2*k!*(J^(k+2-1))). Bern(k) is a Bernoulli number and J is a large number of the form 4n + 1. See equation 3:3:7 in Spanier and Oldham. - Harry J. Smith, May 07 2009

Examples

			0.91596559417721901505460351493238411077414937428167213426649811962176301977...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 57, 554.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 53-59.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, An Atlas of Functions, 1987, equations 1:7:3, 3:3:7.

Crossrefs

Programs

  • Magma
    R:= RealField(100); Catalan(R); // G. C. Greubel, Aug 21 2018
  • Maple
    evalf(Catalan) ; # R. J. Mathar, Apr 09 2013
  • Mathematica
    nmax = 1000; First[RealDigits[Catalan, 10, nmax]] (* Stuart Clary, Dec 17 2008 *)
    Integrate[ArcTan[x]/x, {x, 0, 1}] (* N. J. A. Sloane, May 03 2013 *)
    N[Im[PolyLog[2, I]], 100] (* Peter Luschny, Oct 04 2019 *)
  • PARI
    { mydigits=20000; default(realprecision, mydigits+80); s=1.0; n=5*mydigits; j=4*n+1; si=-1.0; for (i=3, j-2, s+=si/i^2; si=-si; i++; ); s+=0.5/j^2; ttk=4.0; d=4.0*j^3; xk=2.0; xkp=xk; for (k=2, 100000000, term=(ttk-1)*ttk*xkp; xk++; xkp*=xk; if (k>2, term*=xk; xk++; xkp*=xk; ); term*=bernreal(k)/d; sn=s+term; if (sn==s, break); s=sn; ttk*=4.0; d*=(k+1)*(k+2)*j^2; k++; ); x=10*s; for (n=0, mydigits, d=floor(x); x=(x-d)*10; write("b006752.txt", n, " ", d)); } /* Beta(2) = 1 - 1/3^2 + 1/5^2 - ... - 1/(J-2)^2 + 1/(2*J^2) + 2*Bern(0)/(2*J^3) - 2*3*4*Bern(2)/J^5 + ...  */
    
  • PARI
    default(realprecision,1000+2); /* 1000 terms */
    s=sumalt(n=0,(-1)^n/(2*n+1)^2);
    v=Vec(Str(s)); /* == ["0", ".", "9", "1", "5", "9", "6", ...*/
    vector(#v-2,n,eval(v[n+2]))
    /* Joerg Arndt, Aug 25 2011 */
    
  • PARI
    Catalan \\ Charles R Greathouse IV, Nov 20 2011
    
  • PARI
    (zetahurwitz(2,1/4)-Pi^2)/8 \\ Charles R Greathouse IV, Jan 30 2018
    
  • PARI
    lerchphi(-1, 2, 1/2)/4 \\ Charles R Greathouse IV, Jan 30 2025
    

Formula

G = Integral_{x=0..1} arctan(x)/x dx.
G = Integral_{x=0..1} 3*arctan(x*(1-x)/(2-x))/x dx. - Posting to Number Theory List by James Mc Laughlin, Sep 27 2007
G = (zeta(2,1/4)- zeta(2,3/4))/16. - Gerry Martens, May 27 2011 [With the Hurwitz zeta function zeta.]
G = (1/2)*Sum_{n>=0} (-1)^n * ((3*n+2)*8^n) / ((2*n+1)^3*C(2*n,n)^3) (from the Lima 2012 reference).
G = (-1/64)*Sum_{n>=1} (-1)^n * (2^(8*n) * (40*n^2-24*n+3)) / (n^3 * (2*n-1) * C(2*n,n) * C(4*n,2*n)^2) (from the Lupas 2000 reference).
G = phi(-1, 2, 1/2)/4 = A247685/4, where phi is Lerch transcendent. - Jean-François Alcover, Mar 28 2013
G = (1/2)*Integral_{x=0..Pi/2} log(cot(x)+csc(x)) dx. - Jean-François Alcover, Apr 11 2013 [see the Adamchik link]
G = -Integral_{x=0..1} (log x)/(1+x^2) dx = Integral_{x>=1} (log x)/(1+x^2) dx. - Clark Kimberling, Nov 04 2016
G = (Zeta(2, 1/4) - Pi^2)/8 = (Psi(1, 1/4) - Pi^2)/8 = (A282823-Pi^2)/8, with the Hurwitz zeta function and the trigamma function Psi(1, z). For the partial sums of the series given in the name see A294970/A294971. - Wolfdieter Lang, Nov 15 2017
Equals Im(Li_{2}(i)). - Peter Luschny, Oct 04 2019
Equals -Integral_{x=0..Pi/4} log(tan(x)) dx. - Amiram Eldar, Jun 29 2020
Equals (1/2)*Integral_{x=0..1} K(x) dx = -1/2 + Integral_{x=0..1} E(x) dx, where K(k) and E(k) are the complete elliptic integrals of the first and second kind, respectively, as a functions of the elliptic modulus k. - Gleb Koloskov, Jun 25 2021
From Peter Bala, Dec 08 2021: (Start)
G = 1/2 + 4*Sum_{n >= 1} (-1)^(n+1)*n/(4*n^2 - 1)^2 = -13/18 + (2^7)*3*Sum_{n >= 1} (-1)^(n+1)*n/((4*n^2 - 1)^2*(4*n^2 - 9)^2) = -3983/1350 + (2^15)*3*5*Sum_{n >= 1} (-1)^(n+1)*n/((4*n^2 - 1)^2*(4*n^2 - 9)^2*(4*n^2 - 25)^2).
G = 3/2 - 16*Sum_{n >= 1} (-1)^(n+1)*n/(4*n^2 - 1)^3 = 401/6 - (2^13)*(3^3)*Sum_{n >= 1} (-1)^n*n/((4*n^2 - 1)^3*(4*n^2 - 9)^3) = 5255281/1350 - (2^25)*(3^3)*(5^3)*Sum_{n >= 1} (-1)^(n+1)*n/((4*n^2 - 1)^3*(4*n^2 - 9)^3*(4*n^2 - 25)^3). (End)
From Amiram Eldar, Jan 07 2024: (Start)
Equals beta(2), where beta is the Dirichlet beta function.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^2)^(-1). (End)
Equals 2*Integral_{x=0..Pi/4} log(2*cos(x)) dx = -2*Integral_{x=0..Pi/4} log(2*sin(x)) dx (see Finch). - Stefano Spezia, Nov 14 2024
Equals Integral_{x=0..Pi/4} log((1 + tan(x))/(1 - tan(x))) dx. - Kritsada Moomuang, Jun 03 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 28 2002

A218387 Decimal expansion of the spanning tree constant of the square lattice.

Original entry on oeis.org

1, 1, 6, 6, 2, 4, 3, 6, 1, 6, 1, 2, 3, 2, 7, 5, 1, 2, 0, 5, 5, 3, 5, 3, 7, 8, 2, 5, 8, 7, 3, 5, 7, 9, 6, 7, 5, 4, 5, 6, 2, 6, 4, 6, 1, 5, 9, 4, 3, 3, 4, 9, 0, 8, 1, 0, 4, 4, 0, 0, 6, 2, 7, 6, 4, 4, 6, 9, 9, 0, 5, 4, 7, 5, 2, 1, 7, 5, 5, 4, 4, 6, 9, 0, 6, 5, 0, 7, 2, 9, 7, 2, 1, 2, 5, 3, 6, 2, 3, 5, 6, 3, 5, 8, 9, 1, 2, 1, 1, 1, 1, 5, 1
Offset: 1

Views

Author

R. J. Mathar, Oct 27 2012

Keywords

Examples

			1.16624361612327512055353782587357967545626461594...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.7 and 5.22.6, pp. 54, 399.
  • Asmus L. Schmidt, Ergodic theory of complex continued fractions, Number Theory with an Emphasis on the Markoff Spectrum, in: A. D. Pollington and W. Moran (eds.), Number Theory with an Emphasis on the Markoff Spectrum, Dekker, 1993, pp. 215-226.

Crossrefs

Cf. A006752 (Catalan), A088538 (4/Pi), A229728, A247685.

Programs

  • Magma
    R:= RealField(100); 4*Catalan(R)/Pi(R); // G. C. Greubel, Aug 23 2018
  • Maple
    evalf(Catalan*4/Pi) ;
  • Mathematica
    RealDigits[4*Catalan/Pi, 10, 100][[1]] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    default(realprecision, 100); 4*Catalan/Pi \\ G. C. Greubel, Aug 23 2018
    

Formula

Equals the product of A006752 by A088538.
From Amiram Eldar, Jul 22 2020: (Start)
Equals 1 + Sum_{k>=1} (2*k-1)!!^2/((2*k)!!^2 * (2*k + 1)).
Equals Sum_{k>=0} binomial(2*k,k)^2/(16^k * (2*k + 1)). (End)
Equals (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)^2) / (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)) [Schmidt] (see Finch). - Stefano Spezia, Nov 07 2024
Equals log(A229728) = A247685/Pi. - Hugo Pfoertner, Nov 07 2024
Equals Integral_{x=0..1} EllipticK(x)/(Pi*sqrt(x)) dx. - Kritsada Moomuang, Jun 21 2025

A221209 Decimal expansion of two times the Catalan constant.

Original entry on oeis.org

1, 8, 3, 1, 9, 3, 1, 1, 8, 8, 3, 5, 4, 4, 3, 8, 0, 3, 0, 1, 0, 9, 2, 0, 7, 0, 2, 9, 8, 6, 4, 7, 6, 8, 2, 2, 1, 5, 4, 8, 2, 9, 8, 7, 4, 8, 5, 6, 3, 3, 4, 4, 2, 6, 8, 5, 3, 2, 9, 9, 6, 2, 3, 9, 2, 4, 3, 5, 2, 6, 0, 3, 9, 5, 5, 2, 5, 0, 9, 5, 3, 8, 9, 5, 8, 7, 1, 3, 0, 2, 5, 8, 5, 2, 2, 3, 0, 2, 1, 2
Offset: 1

Views

Author

R. J. Mathar, Feb 21 2013

Keywords

Examples

			1.83193118835443803010920702986476822154...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 55.
  • I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products, 5th edition, Academic Press, 1994, eq. (3.521.2).

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 2*Catalan(R); // G. C. Greubel, Aug 25 2018
  • Maple
    evalf(2*Catalan) ;
  • Mathematica
    RealDigits[2 Catalan, 10, 100][[1]] (* Bruno Berselli, Feb 21 2013 *)
  • PARI
    default(realprecision, 100); 2*Catalan \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals Integral_{x=0..oo} x/cosh(x) dx.
Equals 2*A006752.
From Amiram Eldar, Aug 20 2020: (Start)
Equals Integral_{x=0..Pi/2} x/sin(x) dx.
Equals 1 + Integral_{x=0..oo} x * exp(-x) * tanh(x) dx. (End)
Equals 3F2(1/2,1,1;3/2,3/2;1) [Krupnikov]. - R. J. Mathar, May 13 2024
From Stefano Spezia, Nov 12 2024: (Start)
Equals Integral_{x=0..oo} arctan(x)/(x*sqrt(x^2 + 1)) dx = Integral_{x=0..1} K(x^2) dx, where K(x) is the complete elliptic integral of the first kind (see Shamos).
Equals Sum_{k>=0} 2^(2*k)/((2*k + 1)^2*binomial(2*k,k)) (see Finch). (End)
Equals A247685/2. - Hugo Pfoertner, Nov 12 2024
Equals Sum_{n>=1} H(2*n) * binomial(2*n, n) / (4^n * (2*n + 1)), where H(n) is the n-th harmonic number. - Antonio Graciá Llorente, Apr 04 2025
Equals Integral_{x=-1..1} -log(abs(x))/(1 + x^2) dx. - Kritsada Moomuang, May 28 2025

A263354 Decimal expansion of the generalized hypergeometric function 3F2(1/2,3/2,3/2; 5/2,5/2;x) at x=1/2.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 3, 7, 8, 0, 9, 2, 9, 0, 1, 7, 3, 6, 6, 3, 9, 7, 1, 7, 6, 0, 6, 2, 5, 4, 4, 1, 7, 1, 9, 6, 4, 6, 4, 2, 5, 1, 4, 2, 6, 3, 5, 6, 4, 0, 8, 4, 3, 1, 8, 0, 6, 7, 4, 8, 8, 8, 2, 6, 1, 9, 6, 9, 6, 7, 6, 4, 2, 3, 9, 0, 9, 8, 2, 8, 8, 0, 7, 2, 9, 7, 7, 2, 8, 0
Offset: 1

Views

Author

R. J. Mathar, Oct 16 2015

Keywords

Examples

			1.113463780929017366397176...
		

Crossrefs

Programs

  • Maple
    evalf(hypergeom([1/2,3/2,3/2],[5/2,5/2],1/2)) ;
  • Mathematica
    RealDigits[9*(4*Catalan - 2 + Pi*(Log[2] - 1))/(4*Sqrt[2]), 10, 120][[1]] (* Amiram Eldar, Aug 23 2024 *)

Formula

Equals 9*(4*Catalan-2+Pi*(log 2 -1))/(4*sqrt(2)) = 9*(A247685 -2 - A000796 * A244009) / A010487.

A375392 Decimal expansion of the hyperbolic volume of the link complement of the Borromean rings.

Original entry on oeis.org

7, 3, 2, 7, 7, 2, 4, 7, 5, 3, 4, 1, 7, 7, 5, 2, 1, 2, 0, 4, 3, 6, 8, 2, 8, 1, 1, 9, 4, 5, 9, 0, 7, 2, 8, 8, 6, 1, 9, 3, 1, 9, 4, 9, 9, 4, 2, 5, 3, 3, 7, 7, 0, 7, 4, 1, 3, 1, 9, 8, 4, 9, 5, 6, 9, 7, 4, 1, 0, 4, 1, 5, 8, 2, 1, 0, 0, 3, 8, 1, 5, 5, 8, 3, 4, 8, 5
Offset: 1

Views

Author

Luc Ta, Aug 21 2024

Keywords

Examples

			7.32772475341775212043682811945907288619319499425337707...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[8 * Catalan, 100]][[1]]

Formula

Equals 8*A006752 = 2*A247685.
Equals -16*Integral_{x=0..Pi/4} log|2*sin(x)| dx.
Equals 2*hyperbolic volume of the link complement of the Whitehead link.
Showing 1-5 of 5 results.