cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 244 results. Next

A104338 Binary expansion of Catalan constant A006752.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Sep 16 2007

Keywords

Examples

			In base 10: 0.91596559..., in base 2: 0.1110101001111...
		

Crossrefs

Programs

Extensions

More terms from Stefan Steinerberger, Sep 17 2007

A294970 Numerators of the partial sums for the Catalan constant A006752: Sum_{k=0..n} ((-1)^k)/(2*k+1)^2, n >= 0.

Original entry on oeis.org

1, 8, 209, 10016, 91369, 10956424, 1863641881, 1854623872, 538015351033, 193637145687688, 194117166024913, 102476291858462752, 2566386635039604121, 23062916917686411464, 19421109407275720721849, 18642496069331249273291264
Offset: 0

Views

Author

Wolfdieter Lang, Nov 15 2017

Keywords

Comments

The corresponding denominators are given in A294971.

Examples

			The rationals r(n) begin: 1, 8/9, 209/225, 10016/11025, 91369/99225, 10956424/12006225, 1863641881/2029052025, 1854623872/2029052025, 538015351033/586396035225, 193637145687688/211688968716225, 194117166024913/211688968716225, 102476291858462752/111983464450883025, ...
r(10^5) = 0.9159655942 (Maple 10 digits) to be compares with 0.91596559417... from A006752.
		

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k/(2*k+1)^2: k in [0..n]])): n in [0..20]]; // G. C. Greubel, Aug 22 2018
  • Mathematica
    Table[Numerator[Sum[(-1)^k/(2*k+1)^2, {k,0,n}]], {n,0,20}] (* Vaclav Kotesovec, Nov 15 2017 *)
  • PARI
    for(n=0,20, print1(numerator(sum(k=0,n, (-1)^k/(2*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 22 2018
    

Formula

a(n) = numerator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k/(2*k+1)^2 = (Zeta(2, 1/4) - Zeta(2,floor(n/2) + 5/4) - (Zeta(2, 3/4) - Zeta(2,floor((n-1)/2) + 7/4)))/16, Zeta(2, z) = Psi(1, z), with the Hurwitz Zeta function and the trigamma function Psi(1, z).
The limit n-> infinity of r(n) is the Catalan constant given in A006752; see in particular the formula (Zeta(2, 1/4) - Zeta(2, 3/4))/16.

A294971 Denominators of the partial sums for the Catalan constant A006752: Sum_{k=0..n} ((-1)^k)/(2*k+1)^2, n >= 0.

Original entry on oeis.org

1, 9, 225, 11025, 99225, 12006225, 2029052025, 2029052025, 586396035225, 211688968716225, 211688968716225, 111983464450883025, 2799586611272075625, 25196279501448680625, 21190071060718340405625, 20363658289350325129805625
Offset: 0

Views

Author

Wolfdieter Lang, Nov 15 2017

Keywords

Comments

The corresponding numerators are given in A294970. There details are given.

Examples

			See A294970.
		

Crossrefs

Programs

  • Magma
    [Denominator((&+[(-1)^k/(2*k+1)^2: k in [0..n]])): n in [0..20]]; // G. C. Greubel, Aug 22 2018
  • Mathematica
    Table[Denominator[Sum[(-1)^k/(2*k+1)^2, {k,0,n}]], {n,0,20}] (* Vaclav Kotesovec, Nov 15 2017 *)
  • PARI
    for(n=0,20, print1(denominator(sum(k=0,n, (-1)^k/(2*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 22 2018
    

Formula

a(n) = numerator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k/(2*k+1)^2.
For r(n) in terms of the Hurwitz Zeta function or the trigamma function see A294970.

A099616 Sum of the first n decimal places of Catalan's constant 0.9159655941772... (sequence A006752).

Original entry on oeis.org

9, 10, 15, 24, 30, 35, 40, 49, 53, 54, 61, 68, 70, 71, 80, 80, 81, 86, 86, 91, 95, 101, 101, 104, 109, 110, 114, 123, 126, 128, 131, 139, 143, 144, 145, 145, 152, 159, 163, 164, 168, 177, 180, 187, 191, 193, 201, 202, 208, 215, 217, 218, 221, 225, 227, 233, 239
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 25 2004

Keywords

Examples

			Catalan's constant = 0.9159655941772... so the sums are 9, 9+1, 9+1+5, 9+1+5+9, 9+1+5+9+6..., leading to the terms 9, 10, 15, 24, 30, ...
		

Crossrefs

Cf. A006752 for digits of Catalan's constant. Similarly constructed sequences for other constants at A099541 and sequence references therein.

Programs

  • Mathematica
    Accumulate[RealDigits[N[Catalan,60]][[1]]] (* Harvey P. Dale, May 10 2011 *)

A113860 Start with the binary representation of the Catalan constant (A104338, A006752) = 0.91596559... = sum_{i=1..infinity} b(i)/2^i, where b(i)=1,1,1,0,1,0,1,0,0,1,1,1,1.... Then a(n-1)=sum_{i=1..k: sum_{ j = 1..k} b(j)=n} b(i) * 2^(i-1). In words: scan the binary digits of the number, halt at each nonzero binary digit, add a power of 2 corresponding to the place of this digit after the comma, assign current partial sum to a(n), increment n.

Original entry on oeis.org

1, 3, 7, 23, 87, 599, 1623, 3671, 7767, 15959, 81495, 343639, 867927, 1916503, 18693719, 152911447, 421346903, 958217815, 2031959639, 4179443287, 12769377879, 1112281005655, 9908374027863, 27500560072279, 97869304249943
Offset: 0

Views

Author

Artur Jasinski, Jan 25 2006

Keywords

Comments

An instance of a Jasinski Integer Sequence using the convention JIS[number,counting system] as defined for example in A080355. This is JIS [Catalan constant,binary]=JIS[0.9159655941772190150546..,2].

Crossrefs

Extensions

Naming a sequence after oneself is deprecated. - N. J. A. Sloane.
Corrected and extended by R. J. Mathar, Aug 31 2007

A345738 Decimal expansion of (2*G+1)/Pi, where G is Catalan's constant (A006752).

Original entry on oeis.org

9, 0, 1, 4, 3, 1, 6, 9, 4, 2, 4, 5, 4, 2, 8, 2, 3, 1, 8, 1, 4, 5, 3, 6, 4, 3, 9, 6, 8, 1, 8, 1, 8, 5, 6, 1, 7, 9, 7, 0, 5, 1, 5, 9, 9, 4, 5, 2, 5, 8, 7, 4, 3, 8, 0, 1, 7, 3, 3, 7, 8, 2, 6, 3, 4, 1, 2, 8, 8, 8, 6, 9, 0, 2, 9, 3, 3, 0, 7, 9, 3, 6, 3, 3, 4, 8, 1
Offset: 0

Views

Author

Amiram Eldar, Jun 25 2021

Keywords

Comments

A projectile is launched with an initial speed v at angle theta above the horizon. Assuming that the gravitational acceleration g is uniform and neglecting the air resistance, the trajectory is a part of a parabola whose expected length, averaged over theta uniformly chosen at random from the range [0, Pi/2], is c * v^2/g, where c is this constant.
The length of the trajectory as a function of theta is L(theta) = (v^2/g)*(sin(theta) + cos(theta)^2*log((1+sin(theta))/(1-sin(theta)))/2). L(theta) goes from 0 to 1 between theta = 0 and Pi/2. It has a maximum at theta = 0.985514... (A345737), and a unique value at 0 <= theta < 0.599677... (A345739). The average length (c * v^2/g) occurs at theta = 0.5152731296... (29.522975... degrees).

Examples

			0.90143169424542823181453643968181856179705159945258...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2*Catalan + 1)/Pi, 10, 100][[1]]

Formula

Equals (2 * A006752 + 1)/A000796.
Equals 2 * A143233 + 1.

A377753 Decimal expansion of 8*G/Pi^2, where G is the Catalan's constant (A006752).

Original entry on oeis.org

7, 4, 2, 4, 5, 3, 7, 4, 5, 4, 2, 1, 5, 4, 4, 3, 2, 5, 9, 0, 7, 9, 2, 7, 9, 6, 0, 7, 9, 8, 8, 7, 9, 9, 4, 2, 4, 3, 7, 7, 2, 1, 8, 3, 6, 5, 2, 5, 1, 7, 2, 8, 2, 1, 6, 3, 0, 4, 0, 7, 6, 7, 7, 5, 6, 4, 5, 0, 4, 4, 8, 5, 1, 5, 0, 3, 1, 1, 0, 0, 7, 1, 6, 6, 9, 1, 0, 8, 5, 1, 0, 1, 8, 4, 9, 4, 5, 4, 3, 9
Offset: 0

Views

Author

Stefano Spezia, Nov 07 2024

Keywords

Examples

			0.7424537454215443259079279607988799424377218365...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.7 and 7.7, pp. 54, 474.

Crossrefs

Cf. A002388, A006752, A218387, A242822 (see the second formula).

Programs

Formula

Equals (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)^2) / (Sum_{n>=1} 1/(2*n - 1)^2) (see Finch).
Equals 1/A242822. - Hugo Pfoertner, Nov 07 2024
Equals (1 - W)/(1 + W), where W = tanh(Sum_{prime p == 3 (mod 4)} arctanh(1/p^2)) = zeta(2,3/4)/zeta(2,1/4) = (Pi^2 - 8*G)/(Pi^2 + 8*G) = 0.1478066521164... Physical interpretation: the constant W is the relativistic sum of the velocities c/p^2 over all primes p == 3 (mod 4), in units where the speed of light c = 1. - Thomas Ordowski, Nov 23 2024

A132201 Pierce expansion of Catalan's Constant A006752.

Original entry on oeis.org

1, 11, 13, 59, 582, 12285, 127893, 654577, 1896651, 2083263, 3828867, 6195679, 22339606, 43877386, 209882043, 269091773, 1585394894, 2614512078, 3726537414, 4487682121, 6296491774, 8648456991, 23933983277, 174313954158, 367633382556
Offset: 1

Views

Author

R. J. Mathar, Nov 05 2007

Keywords

Examples

			0.9159... = 1/1 - 1/11 + 1/(11*13) - 1/(11*13*59) + 1/(11*13*59*582) - ...
		

Crossrefs

Cf. A006752.

Programs

  • Maple
    Digits := 300: Pierce := proc(x) local resid,a,i,an ; resid := x ; a := [] ; for i from 1 do an := floor(1./resid) ; a := [op(a),an] ; resid := evalf(1.-an*resid) ; if ilog10( mul(i,i=a)) > 0.7*Digits then break ; fi ; od: RETURN(a) ; end: Pierce(Catalan);
  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Catalan , 7!], 20] (* G. C. Greubel, Nov 15 2016 *)
  • PARI
    r=1/Catalan; for(n=1, 10, print(floor(r), ", "); r=r/(r-floor(r))) \\ G. C. Greubel, Nov 15 2016

A322757 Decimal expansion of G/(2*Pi), where G is Catalan's constant A006752.

Original entry on oeis.org

1, 4, 5, 7, 8, 0, 4, 5, 2, 0, 1, 5, 4, 0, 9, 3, 9, 0, 0, 6, 9, 1, 9, 2, 2, 2, 8, 2, 3, 4, 1, 9, 7, 4, 5, 9, 4, 3, 2, 0, 3, 3, 0, 7, 6, 9, 9, 2, 9, 1, 8, 6, 3, 5, 1, 3, 0, 5, 0, 0, 7, 8, 4, 5, 5, 5, 8, 7, 3, 8, 1, 8, 4, 3, 9, 2
Offset: 0

Views

Author

N. J. A. Sloane, Dec 28 2018

Keywords

Comments

Per-site entropy of the dimer model on a square grid.

Examples

			0.1457804520154093900691922282341974594320330769929186351305007845558738184...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 554.

Crossrefs

Programs

  • Mathematica
    RealDigits[Catalan/(2*Pi), 10, 120][[1]] (* Amiram Eldar, May 24 2023 *)

Formula

Equals (1/2) * A143233. - Peter Bala, Aug 01 2025

A367053 Decimal expansion of Catalan's constant minus Serret's integral, A006752 - A102886.

Original entry on oeis.org

6, 4, 3, 7, 6, 7, 3, 3, 2, 8, 8, 9, 2, 6, 8, 7, 4, 8, 7, 4, 2, 0, 1, 7, 4, 0, 2, 6, 5, 2, 6, 8, 2, 3, 6, 7, 3, 5, 6, 8, 2, 6, 4, 1, 1, 7, 3, 5, 5, 1, 1, 3, 4, 7, 4, 7, 5, 7, 7, 3, 7, 1, 2, 9, 7, 2, 4, 7, 4, 4, 5, 1, 1, 2, 9, 1, 6, 2, 0, 2, 1, 1, 7, 5, 5, 6, 5
Offset: 0

Views

Author

Peter Luschny, Nov 03 2023

Keywords

Examples

			0.64376733288926874874201740265268236735682641173551134747577...
		

Crossrefs

Programs

  • Maple
    Im(polylog(2, (1 + I)/2)): evalf(%, 88);
  • Mathematica
    First[RealDigits[Catalan - Pi * Log[2] / 8, 10, 87]]
  • Python
    # Use a few guard digits when computing.
    # BBP formula (1 / 16) P(2, 16, 8, (8, 8, 4, 0, -2, -2, -1, 0))
    from decimal import Decimal as dec, getcontext
    def BBPCatSer(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(16)
        for k in range(n):
            ek = dec(8 * k)
            s += f * ( dec(8) / (ek + 1) ** 2 + dec(8) / (ek + 2) ** 2
                     + dec(4) / (ek + 3) ** 2 - dec(2) / (ek + 5) ** 2
                     - dec(2) / (ek + 6) ** 2 - dec(1) / (ek + 7) ** 2 )
            f /= g
        return s / g
    print(BBPCatSer(200))

Formula

Equals Integral_{x=0..1} arctan(x)/(x*(1 + x)) dx.
Equals Im(Polylog(2, (1 + i)/2)).
Equals Catalan - Pi * log(2) / 8.
Equals (zeta(2, 1/4) - Pi * (Pi + log(2))) / 8.
Showing 1-10 of 244 results. Next