cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A143233 Decimal expansion of the dimer constant.

Original entry on oeis.org

2, 9, 1, 5, 6, 0, 9, 0, 4, 0, 3, 0, 8, 1, 8, 7, 8, 0, 1, 3, 8, 3, 8, 4, 4, 5, 6, 4, 6, 8, 3, 9, 4, 9, 1, 8, 8, 6, 4, 0, 6, 6, 1, 5, 3, 9, 8, 5, 8, 3, 7, 2, 7, 0, 2, 6, 1, 0, 0, 1, 5, 6, 9, 1, 1, 1, 7, 4, 7, 6, 3, 6, 8, 8, 0, 4, 3, 8, 8, 6, 1, 7, 2, 6, 6, 2, 6, 8, 2, 4, 3, 0, 3, 1, 3, 4, 0, 5, 8, 9, 0, 8, 9, 7, 2
Offset: 0

Views

Author

Eric W. Weisstein, Jul 31 2008

Keywords

Examples

			0.29156090403081878013...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.23, p. 407.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Catalan(R)/Pi(R); // G. C. Greubel, Aug 24 2018
  • Maple
    evalf[140](Catalan/Pi);  # Alois P. Heinz, Jun 04 2025
  • Mathematica
    RealDigits[Catalan/Pi, 10, 100][[1]] (* G. C. Greubel, Aug 24 2018 *)
  • PARI
    default(realprecision, 100); Catalan/Pi \\ G. C. Greubel, Aug 24 2018
    

Formula

Equals Catalan/Pi = A006752/A000796.
Equals Integral_{t=-Pi..Pi} arccosh(sqrt(cos(t)+3)/sqrt(2))/(4*Pi) dt. - Jean-François Alcover, May 14 2014
From Antonio Graciá Llorente, Oct 11 2024: (Start)
Equals Sum_{n>=0} (n/2^(n + 2)) * Sum_{k>=0} (-1)^(k + 1)*binomial(n, k)*log(2*k + 1), (Guillera and Sondow, 2008).
Equals Sum_{n>=1} n*(arccoth((4*n)/3) - 3*arccoth(4*n)). (End)
Equals A006752/Pi = log(A097469) = 2*A322757. - Hugo Pfoertner, Oct 11 2024
Equals Integral_{x=0..1} EllipticK(x)/(4*Pi*sqrt(x)) dx. - Kritsada Moomuang, Jun 04 2025
From Peter Bala, Jul 29 2025: (Start)
Equals Sum_{k >= 0} (1/4)^(2*k+1) * binomial(2*k, k)^2/(2*k + 1), a slowly converging series due to Ramanujan. For example, define s(n) = Sum_{k = 0..n} (1/4)^(2*k+1) * binomial(2*k, k)^2/(2*k + 1). Then s(50) = 0.29(07...) is only correct to 2 decimal places.
Define S(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n,k) * binomial(n+k,k) * s(n+k). It appears that S(n) tends to the dimer constant far more rapidly. For example, S(50) = 0.291560904030818780138384456468 39(36...) is correct to 32 decimal places. (End)
Equals Sum_{k>=0} (2^(2*k+1)-4)*zeta(2*k)/(4^(2*k+1)*(2*k+1)). - Amiram Eldar, Sep 02 2025
Showing 1-1 of 1 results.