cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A097469 Decimal expansion of growth constant C for dimer model on square grid.

Original entry on oeis.org

1, 3, 3, 8, 5, 1, 5, 1, 5, 1, 9, 7, 6, 0, 9, 6, 7, 6, 6, 9, 3, 8, 1, 9, 5, 9, 0, 2, 0, 1, 8, 5, 1, 3, 5, 3, 7, 0, 6, 4, 3, 5, 3, 6, 9, 7, 1, 2, 7, 9, 1, 1, 3, 1, 4, 6, 4, 1, 2, 3, 4, 7, 8, 6, 6, 2, 2, 3, 9, 1, 1, 3, 3, 0, 0, 7, 9, 8, 0, 9, 7, 8, 6, 4, 6, 4, 8, 7, 3, 8, 4, 6, 1, 7, 7, 4, 4
Offset: 1

Views

Author

Ralf Stephan, Sep 18 2004

Keywords

Examples

			1.33851515197609676693819590201851353706435369712791131464123...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.8.3 and 5.23.1, pp. 63, 407.

Crossrefs

Cf. A000796 (Pi), A006752 (Catalan's constant).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Exp(Catalan(R)/Pi(R)); // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[Exp[Catalan/Pi], 10, 100][[1]] (* G. C. Greubel, Aug 25 2018 *)
  • PARI
    default(realprecision, 100); exp(Catalan/Pi) \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals e^(G/Pi), with G = A006752 (Catalan's constant).
Equals exp((1/Pi^2) * Integral_{x=0..Pi/2, y=0..Pi/2} log(4*cos(x)^2 + 4*cos(y)^2) dx dy). - Vaclav Kotesovec, Jan 04 2021
Equals sqrt(A130834) = exp(A143233). - Hugo Pfoertner, Nov 18 2024

Extensions

Terms a(14) onward corrected by G. C. Greubel, Aug 26 2018

A256318 Decimal expansion of Sum_{k>=0} zeta(2k)/((2k+1)*4^(2k)) (negated).

Original entry on oeis.org

4, 6, 4, 8, 4, 7, 6, 9, 9, 1, 7, 0, 8, 0, 5, 1, 0, 7, 4, 9, 2, 6, 9, 2, 4, 8, 6, 8, 3, 2, 9, 3, 9, 0, 6, 0, 8, 8, 2, 9, 4, 1, 1, 8, 7, 5, 7, 5, 9, 0, 1, 0, 8, 3, 7, 9, 1, 1, 7, 1, 5, 7, 1, 4, 8, 5, 0, 9, 6, 0, 4, 2, 3, 7, 2, 8, 6, 2, 5, 4, 0, 6, 2, 8, 0, 9, 2, 6, 5, 6, 0, 5, 2, 2, 3, 8, 7, 3, 0, 7, 9, 4, 4, 7, 3
Offset: 0

Views

Author

Jean-François Alcover, Mar 23 2015

Keywords

Examples

			-0.464847699170805107492692486832939060882941187575901...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Catalan(R)/Pi(R) + Log(2)/4; // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[-Catalan/Pi - Log[2]/4, 10, 105] // First
  • PARI
    Catalan/Pi + log(2)/4 \\ Charles R Greathouse IV, Mar 23 2015
    
  • PARI
     5 - sumpos(k=1,zeta(2*k)/(2*k+1)/16^k) \\ Charles R Greathouse IV, Mar 23 2015
    

Formula

Equals -G/Pi - log(2)/4 = -A143233-A379101, where G is Catalan's constant.

A345738 Decimal expansion of (2*G+1)/Pi, where G is Catalan's constant (A006752).

Original entry on oeis.org

9, 0, 1, 4, 3, 1, 6, 9, 4, 2, 4, 5, 4, 2, 8, 2, 3, 1, 8, 1, 4, 5, 3, 6, 4, 3, 9, 6, 8, 1, 8, 1, 8, 5, 6, 1, 7, 9, 7, 0, 5, 1, 5, 9, 9, 4, 5, 2, 5, 8, 7, 4, 3, 8, 0, 1, 7, 3, 3, 7, 8, 2, 6, 3, 4, 1, 2, 8, 8, 8, 6, 9, 0, 2, 9, 3, 3, 0, 7, 9, 3, 6, 3, 3, 4, 8, 1
Offset: 0

Views

Author

Amiram Eldar, Jun 25 2021

Keywords

Comments

A projectile is launched with an initial speed v at angle theta above the horizon. Assuming that the gravitational acceleration g is uniform and neglecting the air resistance, the trajectory is a part of a parabola whose expected length, averaged over theta uniformly chosen at random from the range [0, Pi/2], is c * v^2/g, where c is this constant.
The length of the trajectory as a function of theta is L(theta) = (v^2/g)*(sin(theta) + cos(theta)^2*log((1+sin(theta))/(1-sin(theta)))/2). L(theta) goes from 0 to 1 between theta = 0 and Pi/2. It has a maximum at theta = 0.985514... (A345737), and a unique value at 0 <= theta < 0.599677... (A345739). The average length (c * v^2/g) occurs at theta = 0.5152731296... (29.522975... degrees).

Examples

			0.90143169424542823181453643968181856179705159945258...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2*Catalan + 1)/Pi, 10, 100][[1]]

Formula

Equals (2 * A006752 + 1)/A000796.
Equals 2 * A143233 + 1.

A214174 Decimal expansion of Integral_{x=0..oo} x/cosh(Pi*x) dx.

Original entry on oeis.org

1, 8, 5, 6, 1, 3, 4, 3, 6, 3, 5, 5, 3, 8, 6, 0, 8, 1, 4, 7, 6, 9, 8, 1, 9, 9, 0, 1, 9, 9, 7, 1, 9, 9, 8, 5, 6, 0, 9, 4, 3, 0, 4, 5, 9, 1, 3, 1, 2, 9, 3, 2, 0, 5, 4, 0, 7, 6, 0, 1, 9, 1, 9, 3, 9, 1, 1, 2, 6, 1, 2, 1, 2, 8, 7, 5, 7, 7, 7, 5, 1, 7, 9, 1, 7, 2, 7
Offset: 0

Views

Author

Bruno Berselli, Mar 20 2013

Keywords

Comments

This sequence is between A020761 [Integral_{x=0..oo} x^0/cosh(Pi*x) dx] and A020821 [Integral_{x=0..oo} x^2/cosh(Pi*x) dx].

Examples

			0.1856134363553860814769819901997199856094304591312932054076019...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 2*Catalan(R)/Pi(R)^2; // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[2 Catalan/Pi^2, 10, 90][[1]]
  • PARI
    default(realprecision, 100); 2*Catalan/Pi^2 \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals A060294*A143233 = 2*C/Pi^2, where C is Catalan's constant (A006752).

A322757 Decimal expansion of G/(2*Pi), where G is Catalan's constant A006752.

Original entry on oeis.org

1, 4, 5, 7, 8, 0, 4, 5, 2, 0, 1, 5, 4, 0, 9, 3, 9, 0, 0, 6, 9, 1, 9, 2, 2, 2, 8, 2, 3, 4, 1, 9, 7, 4, 5, 9, 4, 3, 2, 0, 3, 3, 0, 7, 6, 9, 9, 2, 9, 1, 8, 6, 3, 5, 1, 3, 0, 5, 0, 0, 7, 8, 4, 5, 5, 5, 8, 7, 3, 8, 1, 8, 4, 3, 9, 2
Offset: 0

Views

Author

N. J. A. Sloane, Dec 28 2018

Keywords

Comments

Per-site entropy of the dimer model on a square grid.

Examples

			0.1457804520154093900691922282341974594320330769929186351305007845558738184...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 554.

Crossrefs

Programs

  • Mathematica
    RealDigits[Catalan/(2*Pi), 10, 120][[1]] (* Amiram Eldar, May 24 2023 *)

Formula

Equals (1/2) * A143233. - Peter Bala, Aug 01 2025

A378910 Decimal expansion of 2*G/Pi, where G = A006752.

Original entry on oeis.org

5, 8, 3, 1, 2, 1, 8, 0, 8, 0, 6, 1, 6, 3, 7, 5, 6, 0, 2, 7, 6, 7, 6, 8, 9, 1, 2, 9, 3, 6, 7, 8, 9, 8, 3, 7, 7, 2, 8, 1, 3, 2, 3, 0, 7, 9, 7, 1, 6, 7, 4, 5, 4, 0, 5, 2, 2, 0, 0, 3, 1, 3, 8, 2, 2, 3, 4, 9, 5, 2, 7, 3, 7, 6, 0, 8, 7, 7, 7, 2, 3, 4, 5, 3, 2, 5, 3, 6, 4, 8, 6, 0, 6, 2, 6, 8, 1, 1, 7, 8
Offset: 0

Views

Author

Stefano Spezia, Dec 10 2024

Keywords

Examples

			0.58312180806163756027676891293678983772813230797167...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 3.10, p. 232.

Crossrefs

Programs

  • Mathematica
    RealDigits[2Catalan/Pi,10,100][[1]]

Formula

Equals log(A130834).
Equals 2*A143233.

A378911 Decimal expansion of sqrt(2)*exp(2*G/Pi), where G = A006752.

Original entry on oeis.org

2, 5, 3, 3, 7, 3, 7, 2, 7, 9, 4, 8, 5, 8, 4, 1, 9, 0, 9, 5, 8, 3, 2, 8, 9, 6, 3, 4, 0, 4, 1, 8, 6, 3, 2, 9, 1, 6, 8, 9, 6, 3, 0, 8, 0, 8, 8, 4, 2, 0, 3, 0, 3, 1, 2, 6, 1, 1, 9, 8, 2, 3, 9, 4, 7, 4, 2, 4, 7, 1, 1, 5, 9, 1, 0, 0, 4, 2, 4, 9, 7, 3, 3, 7, 7, 1, 8, 3, 0, 1, 2, 7, 6, 4, 8, 1, 3, 5, 6, 5
Offset: 1

Views

Author

Stefano Spezia, Dec 10 2024

Keywords

Examples

			2.5337372794858419095832896340418632916896308088420...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 3.10, p. 233.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[2]*Exp[2Catalan/Pi],10,100][[1]]

A348371 Decimal expansion of Sum_{k>=0} binomial(2*k,k)^2/(16^k*(k+1)^3).

Original entry on oeis.org

1, 0, 3, 9, 2, 8, 0, 4, 9, 6, 7, 9, 4, 8, 7, 6, 2, 2, 0, 0, 6, 0, 2, 5, 2, 6, 2, 0, 1, 0, 3, 5, 6, 6, 4, 4, 0, 8, 6, 6, 0, 1, 1, 2, 1, 3, 3, 0, 1, 1, 1, 0, 4, 9, 7, 3, 5, 4, 8, 9, 4, 9, 6, 9, 9, 7, 2, 4, 6, 6, 1, 4, 4, 2, 2, 6, 8, 1, 9, 2, 4, 3, 0, 9, 2, 6, 7, 9, 9, 1, 9, 8, 0, 2, 7, 0, 5, 3, 6, 7, 3, 6, 7, 8, 8
Offset: 1

Views

Author

Amiram Eldar, Oct 15 2021

Keywords

Examples

			1.03928049679487622006025262010356644086601121330111...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[48/Pi - 16*(1 - Log[2]) - 32*Catalan/Pi, 10, 100][[1]]

Formula

Equals 48/Pi - 16*(1 - log(2)) - 32*G/Pi, where G is Catalan's constant (A006752).
Equals 4F3(1/2, 1/2, 1, 1; 2, 2, 2; 1), where pFq() is the generalized hypergeometric function.

A378025 Decimal expansion of 1/2 - log(2)/4 - G/Pi, where G = A006752.

Original entry on oeis.org

0, 3, 5, 1, 5, 2, 3, 0, 0, 8, 2, 9, 1, 9, 4, 8, 9, 2, 5, 0, 7, 3, 0, 7, 5, 1, 3, 1, 6, 7, 0, 6, 0, 9, 3, 9, 1, 1, 7, 0, 5, 8, 8, 1, 2, 4, 2, 4, 0, 9, 8, 9, 1, 6, 2, 0, 8, 8, 2, 8, 4, 2, 8, 5, 1, 4, 9, 0, 3, 9, 5, 7, 6, 2, 7, 1, 3, 7, 4, 5, 9, 3, 7, 1, 9, 0, 7, 3, 4, 3, 9, 4, 7, 7, 6, 1, 2, 6, 9, 2, 0
Offset: 0

Views

Author

Stefano Spezia, Nov 14 2024

Keywords

Examples

			0.035152300829194892507307513167060939117058812424...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 56.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/2-Log[2]/4-Catalan/Pi,10,100,-1][[1]]

Formula

Equals Sum_{n>=1} zeta(2*n)/(2^(4*n)*(2*n + 1)) (see Finch).
Showing 1-9 of 9 results.