cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A059076 Number of pairs of orientable necklaces with n beads and two colors; i.e., turning the necklace over does not leave it unchanged.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 6, 14, 30, 62, 128, 252, 495, 968, 1866, 3600, 6917, 13286, 25476, 48916, 93837, 180314, 346554, 666996, 1284570, 2477342, 4781502, 9240012, 17871708, 34604066, 67060746, 130085052, 252548760, 490722344
Offset: 0

Views

Author

Henry Bottomley, Dec 22 2000

Keywords

Comments

Number of chiral bracelets with n beads and two colors.

Examples

			For n=6, the only chiral pair is AABABB-AABBAB.  For n=7, the two chiral pairs are AAABABB-AAABBAB and AABABBB-AABBBAB. - _Robert A. Russell_, Sep 24 2018
		

Crossrefs

Column 2 of A293496.
Cf. A059053.
Column 2 of A305541.
Equals (A000031 - A164090) / 2.
a(n) = (A052823(n) - A027383(n-2)) / 2.

Programs

  • Mathematica
    nn=35;Table[CoefficientList[Series[CycleIndex[CyclicGroup[n],s]-CycleIndex[DihedralGroup[n],s]/.Table[s[i]->2,{i,1,n}],{x,0,nn}],x],{n,1,nn}]//Flatten  (* Geoffrey Critzer, Mar 26 2013 *)
    mx=40; CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-2*x^n]/n, {n, mx}]-(1+x)^2/(1-2*x^2))/2, {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
    terms = 36; a29[0] = 1; a29[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#) & ]/(2*n); Array[a29, 36, 0] - LinearRecurrence[{0, 2}, {1, 2, 3}, 36] (* Jean-François Alcover, Nov 05 2017 *)
    k = 2; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n)(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)

Formula

a(n) = A000031(n) - A000029(n) = A000029(n) - A029744(n) = (A000031(n) - A029744(n))/2 = A008965(n) - A091696(n)
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 2*x^n)/n - (1 + x)^2/(1 - 2*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = -(k^floor((n + 1)/2) + k^ceiling((n + 1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k = 2 is the maximum number of colors. - Robert A. Russell, Sep 24 2018

A357000 Number of non-isomorphic cyclic Haar graphs on 2*n nodes.

Original entry on oeis.org

1, 2, 3, 5, 5, 12, 9, 22, 21, 44, 29, 157, 73, 244, 367, 649, 521, 2624, 1609, 7385, 8867, 19400, 16769, 92529, 67553, 216274, 277191, 815557, 662369, 4500266, 2311469
Offset: 1

Views

Author

Pontus von Brömssen, Sep 08 2022

Keywords

Comments

The first value of n for which a(n) < A002729(n) - 1 is n = 8. This is because the first counterexample to the bicirculant analog to Ádám's conjecture occurs for n = 8. In the terminology of Hladnik, Marušič, and Pisanski, the smallest integer pair (i,j) such that i and j are Haar equivalent (i.e., the cyclic Haar graphs with indices i and j are isomorphic) but not cyclically equivalent (see A357005) is (141,147). See also A357001 and A357002.
Terms a(1)-a(29) were found by generating the cyclic Haar graphs with indices in A333764, and filtering out isomorphic graphs using Brendan McKay's software nauty.

Crossrefs

Formula

a(n) is the number of terms k of A137706 in the interval 2^(n-1) <= k < 2^n.
a(n) is the number of fixed points k of A357004 in the interval 2^(n-1) <= k < 2^n.
a(n) <= A002729(n)-1 <= A091696(n) <= A008965(n).

Extensions

a(30) from Eric W. Weisstein, Jun 27 2023
a(31) from Eric W. Weisstein, Jun 28 2023

A098912 Number of ways angles from Pi/n to (n-1)Pi/n can tile around a vertex, where rotations and reflections of an angle sequence are not counted.

Original entry on oeis.org

1, 5, 16, 54, 180, 607, 2098, 7397, 26452, 95821, 350554, 1292634, 4797694, 17904220, 67125898, 252679320, 954505718, 3616951513, 13744169104, 52358244166, 199912298266, 764879838343, 2932035371786, 11259007784430, 43303859981236, 166800020984581
Offset: 2

Views

Author

Stuart E Anderson, Oct 17 2004

Keywords

Comments

Sequence can be interpreted as a tiling of rhombs (with appropriate angles) around a vertex. E.g.. a(5) is the number of ways Penrose rhombs can tile around a vertex.
Also, the number of nonequivalent compositions of 2*n with maximum part size n-1 up to rotation and reflection. - Andrew Howroyd, Sep 06 2017

Examples

			a(3) = 5 because we can write 2pi = 2'+2'+2' or 2'+1'+2'+1' or 2'+2'+1'+1' or 2'+1'+1'+1'+1' or 1'+1'+1'+1'+1'+1' where k' = k pi/3.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := (1/n)*DivisorSum[n, EulerPhi[n/#] * 2^# &];
    a[n_] := b[2*n]/2 + 2^(n-2) - 2^Quotient[n, 2] - 2^Quotient[n-1, 2];
    Table[a[n], {n, 2, 27}] (* Jean-François Alcover, Oct 08 2017, translated from PARI *)
  • PARI
    b(n) = (1/n)*sumdiv(n, d, eulerphi(n/d) * 2^d);
    a(n) = b(2*n)/2 + 2^(n-2) - 2^(n\2) - 2^((n-1)\2); \\ Andrew Howroyd, Sep 06 2017

Formula

From Andrew Howroyd, Sep 06 2017: (Start)
a(n) = A091696(2*n) - 1 - Sum_{1..n} A005418(n).
a(n) = 2^(n-2) - 2^(floor(n/2)) - 2^(floor((n-1)/2)) + (1/(4*n)) * (Sum_{d | 2*n} phi(2*n/d) * 2^d).
(End)

Extensions

Terms a(8) and beyond from Andrew Howroyd, Sep 06 2017

A098913 Number of different ways angles from Pi/n to (n-1)Pi/n can tile around a vertex, where rotations of an angle sequence are not counted, but reflections that are different are counted.

Original entry on oeis.org

1, 5, 19, 75, 287, 1053, 3859, 14089, 51463, 188697, 695155, 2573235, 9571195, 35759799, 134154259, 505163055, 1908619755, 7233118641, 27486768415, 104713346699, 399818311219, 1529747101965, 5864045590035, 22517965253595, 86607619323751, 333599840675337
Offset: 2

Views

Author

Stuart E Anderson, Oct 17 2004

Keywords

Comments

The sequence represents the number of ways rhombi (with appropriate angles) can tile around a vertex, e.g. a(5) is the number of ways Penrose rhombs can tile a vertex where tilings that are different by rotation are counted and tilings that are the same by reflection are also counted.
Also, the number of nonequivalent compositions of 2*n with maximum part size n-1 up to rotation. - Andrew Howroyd, Sep 06 2017

Examples

			a(4)=19 because 2pi = 3'3'2' or 2'2'2'2' or 3'1'2'2' or 3'1'3'1' or 3'2'1'2' or 3'2'2'1' or 3'3'1'1' or 2'2'1'2'1' or 2'2'2'1'1' or 3'1'1'1'2' or 3'1'1'2'1' or 3'1'2'1'1' or 3'2'1'1'1' or 2'1'1'2'1'1' or 2'1'2'1'1'1' or 2'2'1'1'1'1' or 3'1'1'1'1'1' or 2'1'1'1'1'1'1' or 1'1'1'1'1'1'1'1' where k' = k pi/4. Note 3'2'2'1 and 3'1'2'2'; 3'1'1'2'1' and 3'1'2'1'1'; 3'1'1'1'2' and 3'2'1'1'1' are different by rotation but not reflection
		

Crossrefs

Programs

  • PARI
    b(n) = (1/n)*sumdiv(n, d, eulerphi(n/d) * 2^d);
    a(n) = b(2*n) - 1 - 2^n; \\ Andrew Howroyd, Sep 06 2017

Formula

From Andrew Howroyd, Sep 06 2017: (Start)
a(n) = A008965(2*n) - 2^n.
a(n) = (Sum_{d | 2*n} phi(2*n/d) * 2^d)/(2*n) - 1 - 2^n.
(End)

Extensions

Terms a(8) and beyond from Andrew Howroyd, Sep 06 2017
Showing 1-4 of 4 results.