cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A052961 Expansion of (1 - 3*x) / (1 - 5*x + 3*x^2).

Original entry on oeis.org

1, 2, 7, 29, 124, 533, 2293, 9866, 42451, 182657, 785932, 3381689, 14550649, 62608178, 269388943, 1159120181, 4987434076, 21459809837, 92336746957, 397304305274, 1709511285499, 7355643511673, 31649683701868, 136181487974321, 585958388766001, 2521247479907042
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of tilings of a 2 X n rectangle using integer dimension tiles at least one of whose dimensions is 1, so allowable dimensions are 1 X 1, 1 X 2, 1 X 3, 1 X 4, ..., and 2 X 1. - David Callan, Aug 27 2014
a(n+1) counts closed walks on K_2 containing one loop on the index vertex and four loops on the other vertex. Equivalently the (1,1)entry of A^(n+1) where the adjacency matrix of digraph is A=(1,1;1,4). - _David Neil McGrath, Nov 05 2014
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, 0, ...
1, 0, 4, 0, 0, 0, 0, ...
1, 0, 0, 4, 0, 0, 0, ...
1, 0, 0, 0, 4, 0, 0, ...
1, 0, 0, 0, 0, 4, 0, ...
1, 0, 0, 0, 0, 0, 4, ...
...
Take powers of M and extract the upper left term, getting the sequence starting (1, 1, 2, 7, 29, 124, ...). - Gary W. Adamson, Jul 22 2016
From Gary W. Adamson, Jul 29 2016: (Start)
The sequence is N=1 in an infinite set obtained from matrix powers of [(1,N); (1,4)], extracting the upper left terms.
The infinite set begins:
N=1 (A052961): 1, 2, 7, 29 124, 533, 2293, ...
N=2 (A052984): 1, 3, 13, 59, 269, 1227, 5597, ...
N=3 (A004253): 1, 4, 19, 91, 436, 2089, 10009, ...
N=4 (A000351): 1, 5, 25, 125, 625, 3125, 15625, ...
N=5 (A015449): 1, 6, 31, 161, 836, 4341, 22541, ...
N=6 (A124610): 1, 7, 37, 199, 1069, 5743, 30853, ...
N=7 (A111363): 1, 8, 43, 239, 1324, 7337, 40653, ...
N=8 (A123270): 1, 9, 49, 281, 1601, 9129, 52049, ...
N=9 (A188168): 1, 10, 55, 325, 1900, 11125, 65125, ...
N=10 (A092164): 1, 11, 61, 371, 2221, 13331, 79981, ...
... (End)

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=5*a[n-1]-3*a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
  • Magma
    I:=[1,2]; [n le 2 select I[n] else 5*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 17 2014
    
  • Maple
    spec:= [S,{S = Sequence(Union(Prod(Sequence(Union(Z,Z,Z)),Z),Z))}, unlabeled ]: seq(combstruct[count ](spec,size = n), n = 0..20);
    seq(coeff(series((1-3*x)/(1-5*x+3*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 23 2019
  • Mathematica
    CoefficientList[Series[(1-3x)/(1-5x+3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-3},{1,2},30] (* Harvey P. Dale, Nov 23 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x)/(1-5*x+3*x^2)) \\ G. C. Greubel, Oct 23 2019
    
  • Sage
    def A052961_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-3*x)/(1-5*x+3*x^2)).list()
    A052961_list(30) # G. C. Greubel, Oct 23 2019
    

Formula

G.f.: (1-3*x)/(1-5*x+3*x^2).
a(n) = 5*a(n-1) - 3*a(n-2), with a(0) = 1, a(1) = 2.
a(n) = Sum_{alpha=RootOf(1-5*z+3*z^2)} (-1 + 9*alpha)*alpha^(-1-n)/13.
E.g.f.: (1 + sqrt(13) + (sqrt(13)-1) * exp(sqrt(13)*x)) / (2*sqrt(13) * exp(((sqrt(13)-5)*x)/2)). - Vaclav Kotesovec, Feb 16 2015
a(n) = A116415(n) - 3*A116415(n-1). - R. J. Mathar, Feb 27 2019

A092165 Let M = 2 X 2 matrix [ 1 2 / 5 4 ]; a(n) = (1,2) entry of M^n.

Original entry on oeis.org

2, 10, 62, 370, 2222, 13330, 79982, 479890, 2879342, 17276050, 103656302, 621937810, 3731626862, 22389761170, 134338567022, 806031402130, 4836188412782, 29017130476690, 174102782860142, 1044616697160850, 6267700182965102, 37606201097790610, 225637206586743662
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Apr 01 2004

Keywords

Crossrefs

Programs

  • Magma
    [(2*6^n - 2*(-1)^n)/7: n in [1..30]]; // Vincenzo Librandi, Jul 21 2015
  • Mathematica
    Table[ MatrixPower[{{1, 2}, {5, 4}}, n][[1, 2]], {n, 20}] (* Robert G. Wilson v, Apr 22 2004 *)
    LinearRecurrence[{5, 6}, {2, 10}, 25] (* Vincenzo Librandi, Jul 21 2015 *)

Formula

a(n) = (2*6^n - 2*(-1)^n)/7.
a(n) = A092164(n) -(-1)^n.
From R. J. Mathar, Apr 20 2009: (Start)
a(n) = 5*a(n-1) + 6*a(n-2) = 2*A015540(n).
G.f.: 2*x/((1+x)*(1-6*x)). (End)

Extensions

Edited by Robert G. Wilson v, Apr 22 2004
More terms from Vincenzo Librandi, Jul 21 2015

A092166 Let M = 2 X 2 matrix [ 1 2 / 5 4 ]; a(n) = (2,1) entry of M^n.

Original entry on oeis.org

5, 25, 155, 925, 5555, 33325, 199955, 1199725, 7198355, 43190125, 259140755, 1554844525, 9329067155, 55974402925, 335846417555, 2015078505325, 12090471031955, 72542826191725, 435256957150355, 2611541742902125
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Apr 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ MatrixPower[{{1, 2}, {5, 4}}, n][[2, 1]], {n, 20}] (* Robert G. Wilson v, Apr 22 2004 *)

Formula

a(n) = (5*6^n - 5*(-1)^n)/7.
a(n) = A092167(n) +(-1)^n.
From Colin Barker, Nov 08 2012: (Start)
a(n) = 5*a(n-1) + 6*a(n-2).
G.f.: -5*x/((x+1)*(6*x-1)). (End)

Extensions

Edited by Robert G. Wilson v, Apr 22 2004

A092167 Let M = 2 X 2 matrix [ 1 2 / 5 4 ]; a(n) = (2,2) entry of M^n.

Original entry on oeis.org

4, 26, 154, 926, 5554, 33326, 199954, 1199726, 7198354, 43190126, 259140754, 1554844526, 9329067154, 55974402926, 335846417554, 2015078505326, 12090471031954, 72542826191726, 435256957150354, 2611541742902126
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Apr 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ MatrixPower[{{1, 2}, {5, 4}}, n][[2, 2]], {n, 20}] (* Robert G. Wilson v, Apr 22 2004 *)

Formula

a(n) = (5*6^n + 2*(-1)^n)/7.
A092166 -(-1)^n.
From R. J. Mathar, Apr 20 2009: (Start)
a(n) = 5*a(n-1) + 6*a(n-2).
G.f.: 2*x*(2+3*x)/((1+x)*(1-6*x)). (End)

Extensions

Edited by Robert G. Wilson v, Apr 22 2004
Showing 1-4 of 4 results.