cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A363601 Number of partitions of n where there are k^2 - 1 kinds of parts k.

Original entry on oeis.org

1, 0, 3, 8, 21, 48, 126, 288, 693, 1568, 3570, 7896, 17417, 37632, 80823, 171192, 359733, 747936, 1543192, 3155760, 6407037, 12909024, 25835649, 51359136, 101470854, 199264128, 389096028, 755591256, 1459643343, 2805471984, 5366161740, 10216161336, 19362398580
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2023

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    series(exp(add((sigma[3](k) - sigma[1](k))*x^k/k, k = 1..50)), x, 51):
    seq(coeftayl(%, x = 0, n), n = 0..50); # Peter Bala, Jan 16 2025
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(k^2-1)))

Formula

G.f.: 1/Product_{k>=1} (1-x^k)^(k^2-1).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A092348(k) * a(n-k).
G.f.: exp(Sum_{k >= 1} (sigma_3(k) - sigma_1(k))*x^k/k) = 1 + 3*x^2 + 8*x^3 + 21*x^4 + 48*x^5 + .... - Peter Bala, Jan 16 2025

Extensions

Name suggested by Joerg Arndt, Jun 11 2023

A363604 Expansion of Sum_{k>0} x^(2*k)/(1-x^k)^4.

Original entry on oeis.org

0, 1, 4, 11, 20, 40, 56, 95, 124, 186, 220, 336, 364, 512, 584, 775, 816, 1129, 1140, 1526, 1600, 1992, 2024, 2720, 2620, 3290, 3400, 4176, 4060, 5280, 4960, 6231, 6208, 7362, 7216, 9195, 8436, 10280, 10248, 12270, 11480, 14432, 13244, 16192, 15884, 18240
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (DivisorSigma[3, n] - DivisorSigma[1, n])/6; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^k)^4)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 3) - sigma(f))/6; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = (sigma_3(n) - sigma(n))/6 = A092348(n)/6.
G.f.: Sum_{k>0} binomial(k+1,3) * x^k/(1 - x^k).
From Amiram Eldar, Dec 30 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-3) - zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

A086666 a(n) = sigma_2(n) - sigma_1(n).

Original entry on oeis.org

0, 2, 6, 14, 20, 38, 42, 70, 78, 112, 110, 182, 156, 226, 236, 310, 272, 416, 342, 504, 468, 574, 506, 790, 620, 808, 780, 994, 812, 1228, 930, 1302, 1172, 1396, 1252, 1820, 1332, 1750, 1644, 2120, 1640, 2404, 1806, 2478, 2288, 2578, 2162, 3286, 2394, 3162
Offset: 1

Views

Author

Jon Perry, Jul 27 2003

Keywords

Comments

Total area of all distinct L X W rectangles such that s + t = n, 1 <= s <= t, s | n, L = n/s and W = t/s. - Wesley Ivan Hurt, Aug 01 2025

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[2,n]-DivisorSigma[1,n],{n,50}] (* Harvey P. Dale, Aug 01 2020 *)
  • PARI
    a(n) = sigma(n,2)-sigma(n,1);
    
  • PARI
    a(n) = my(f = factor(n)); sigma(f, 2) - sigma(f); \\ Amiram Eldar, Jan 01 2025

Formula

G.f.: Sum_{n>=1} n*(n-1) * x^n/(1-x^n). - Joerg Arndt, Jan 30 2011
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k-1)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
From Peter Bala, Jan 21 2021: (Start)
a(n) = 2*A069153(n).
G.f.: A(x) = Sum_{n >= 1} 2*x^(2*n)/(1 - x^n)^3.
A faster converging series: A(x) = Sum_{n >= 1} x^(n^2)*( n*(n-1)*x^(3*n) - (n^2 + n - 2)*x^(2*n) + n*(3 - n)*x^n + n*(n - 1) )/(1 - x^n)^3 - differentiate equation 5 in Arndt twice w.r.t x and set x = 1. (End)
From Amiram Eldar, Jan 01 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-2) - zeta(s-1)).
Sum_{k=1..n} a(k) ~ (zeta(3)/3) * n^3. (End)
a(n) = Sum_{d|n} d*(d-1). - Wesley Ivan Hurt, Aug 01 2025

A379813 a(n) = sigma_1(n) * sigma_3(n).

Original entry on oeis.org

1, 27, 112, 511, 756, 3024, 2752, 8775, 9841, 20412, 15984, 57232, 30772, 74304, 84672, 145111, 88452, 265707, 137200, 386316, 308224, 431568, 292032, 982800, 488281, 830844, 817600, 1406272, 731700, 2286144, 953344, 2359287, 1790208, 2388204, 2080512, 5028751
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

Comments

See A379812 for more links and Ramanujan's general formula.

References

  • Srinivasa Ramanujan, Collected papers, edited by G. H. Hardy et al., Chelsea, 1962, chapter 17, pp. 133-135.

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ DivisorSigma[{1, 3}, n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); sigma(f) * sigma(f, 3);}

Formula

a(n) = A000203(n) * A001158(n).
Multiplicative with a(p^e) = (p^(e+1)-1) * (p^(3*e+3)-1) / ((p-1) * (p^3-1)).
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-3) * zeta(s-4) / zeta(2*s-4).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 7 * zeta(5) / 4 = 1.81462357150089737107... .
Showing 1-4 of 4 results.