cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A069153 a(n) = Sum_{d|n} d*(d-1)/2.

Original entry on oeis.org

0, 1, 3, 7, 10, 19, 21, 35, 39, 56, 55, 91, 78, 113, 118, 155, 136, 208, 171, 252, 234, 287, 253, 395, 310, 404, 390, 497, 406, 614, 465, 651, 586, 698, 626, 910, 666, 875, 822, 1060, 820, 1202, 903, 1239, 1144, 1289, 1081, 1643, 1197, 1581, 1414, 1736
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2002

Keywords

Comments

Inverse Mobius transform of A000217. - R. J. Mathar, Jan 19 2009

Examples

			x^2 + 3*x^3 + 7*x^4 + 10*x^5 + 19*x^6 + 21*x^7 + 35*x^8 + 39*x^9 + 56*x^10 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq((1/2)*(sigma[2](n) - sigma[1](n)), n = 1..100); # Peter Bala, Jan 21 2021
  • Mathematica
    A069153[n_]:=Plus@@Binomial[Divisors[n],2];Array[A069153,100] (* Enrique Pérez Herrero, Feb 21 2012 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d^2 - d) / 2)}
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 2) - sigma(f)) / 2; \\ Amiram Eldar, Jan 01 2025

Formula

G.f.: Sum_{k>0} x^(2*k)/(1-x^k)^3. - Vladeta Jovovic, Dec 17 2002
Row sums of triangle A134840. - Gary W. Adamson, Nov 12 2007
G.f. A(x) = (1/2) * x * d/dx log( B(x) ) where B() is g.f. for A052847. - Michael Somos, Feb 12 2008
G.f.: Sum_{k>0} ((k^2 - k) / 2) * x^k / (1 - x^k). - Michael Somos, Feb 12 2008
From Peter Bala, Jan 21 2021: (Start)
a(n) = (1/2)*(sigma_2(n) - sigma_1(n)) = (1/2)*(A001157(n) A000203(n)) = (1/2)*A086666.
G.f.: A(x) = (1/2)* Sum_{n >= 1} x^(n^2)*( n*(n-1)*x^(3*n) - (n^2 + n - 2)*x^(2*n) + n*(3 - n)*x^n + n*(n - 1) )/(1 - x^n)^3. - differentiate equation 5 in Arndt twice w.r.t x and set x = 1. (End)
From Amiram Eldar, Jan 01 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-2) - zeta(s-1)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/6) * n^3. (End)

A116963 Inverse Moebius transform of the shifted tetrahedral numbers.

Original entry on oeis.org

4, 14, 24, 49, 60, 118, 124, 214, 244, 356, 368, 608, 564, 814, 896, 1183, 1144, 1668, 1544, 2162, 2168, 2678, 2604, 3698, 3336, 4228, 4304, 5344, 4964, 6732, 5988, 7728, 7528, 8924, 8616, 11297, 9884, 12214, 12064, 14668, 13248, 17132, 15184, 18928, 18412, 21038
Offset: 1

Views

Author

Jonathan Vos Post, Mar 31 2006

Keywords

Examples

			a(12) = ((1+1)*(1+2)*(1+3)/6) + ((2+1)*(2+2)*(2+3)/6) + ((3+1)*(3+2)*(3+3)/6) + ((4+1)*(4+2)*(4+3)/6) + ((6+1)*(6+2)*(6+3)/6) + ((12+1)*(12+2)*(12+3)/6) = 4 + 10 + 20 + 35 + 84 + 455 = 608.
a(13) = ((1+1)*(1+2)*(1+3)/6) + ((13+1)*(13+2)*(13+3)/6) = 4 + 560 = 564.
		

Crossrefs

See also: A007437 (inverse Moebius transform of triangular numbers).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 3, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, 1/(1-x^k)^4-1)) \\ Seiichi Manyama, Jun 12 2023

Formula

a(n) = Sum_{d|n} (d+1)*(d+2)*(d+3)/6 = Sum_{d|n} A000292(d+1).
G.f.: Sum_{k>0} (1/(1-x^k)^4 - 1). - Seiichi Manyama, Jun 12 2023
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_3(n) + 6*sigma_2(n) + 11*sigma_1(n) + 6*sigma_0(n))/6.
Dirichlet g.f.: zeta(s) * (zeta(s-3) + 6*zeta(s-2) + 11*zeta(s-1) + 6*zeta(s)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

A363607 Expansion of Sum_{k>0} x^(3*k)/(1-x^k)^4.

Original entry on oeis.org

0, 0, 1, 4, 10, 21, 35, 60, 85, 130, 165, 245, 286, 399, 466, 620, 680, 921, 969, 1274, 1366, 1705, 1771, 2325, 2310, 2886, 3010, 3679, 3654, 4666, 4495, 5580, 5622, 6664, 6590, 8285, 7770, 9405, 9426, 11210, 10660, 13230, 12341, 14953, 14740, 16951, 16215, 20181
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[#, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^k)^4)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 3) - 3*sigma(f, 2) + 2*sigma(f)) / 6; \\ Amiram Eldar, Dec 30 2024

Formula

G.f.: Sum_{k>0} binomial(k,3) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d,3).
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_3(n) - 3*sigma_2(n) + 2*sigma_1(n)) / 6.
Dirichlet g.f.: zeta(s) * (zeta(s-3) - 3*zeta(s-2) + 2*zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

A363598 Expansion of Sum_{k>0} x^(2*k)/(1+x^k)^4.

Original entry on oeis.org

0, 1, -4, 11, -20, 32, -56, 95, -124, 146, -220, 328, -364, 400, -584, 775, -816, 881, -1140, 1486, -1600, 1552, -2024, 2712, -2620, 2562, -3400, 4064, -4060, 4112, -4960, 6231, -6208, 5730, -7216, 8947, -8436, 8000, -10248, 12230, -11480, 11232, -13244, 15752
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^# * Binomial[# + 1, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1+x^k)^4)))
    
  • PARI
    a(n) = sumdiv(n, d, (-1)^d*binomial(d+1, 3));

Formula

G.f.: Sum_{k>0} binomial(k+1,3) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d+1,3) = (A002129(n) - A138503(n))/6.

A363605 Expansion of Sum_{k>0} x^(2*k)/(1-x^k)^5.

Original entry on oeis.org

0, 1, 5, 16, 35, 76, 126, 226, 335, 531, 715, 1092, 1365, 1947, 2420, 3286, 3876, 5251, 5985, 7861, 8986, 11342, 12650, 16252, 17585, 21841, 24086, 29367, 31465, 38946, 40920, 49662, 53080, 62782, 66206, 80082, 82251, 97376, 102640, 120001, 123410, 146628
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 2, 4] &]; Array[a, 40] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^k)^5)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) + 2*sigma(f, 3) - sigma(f, 2) - 2*sigma(f)) / 24; \\ Amiram Eldar, Dec 30 2024

Formula

G.f.: Sum_{k>0} binomial(k+2,4) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+2,4).
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_4(n) + 2*sigma_3(n) - sigma_2(n) - 2*sigma_1(n)) / 24.
Dirichlet g.f.: zeta(s) * (zeta(s-4) + 2*zeta(s-3) - zeta(s-2) - 2*zeta(s-1)) / 24.
Sum_{k=1..n} a(k) ~ (zeta(5)/120) * n^5. (End)

A363606 Expansion of Sum_{k>0} x^(2*k)/(1-x^k)^6.

Original entry on oeis.org

0, 1, 6, 22, 56, 133, 252, 484, 798, 1344, 2002, 3157, 4368, 6441, 8630, 12112, 15504, 21274, 26334, 35014, 42762, 55133, 65780, 84349, 98336, 123124, 143304, 176373, 201376, 247380, 278256, 336744, 379000, 451402, 502250, 600055, 658008, 775733, 855042
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 3, 5] &]; Array[a, 40] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^k)^6)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 5) + 5*sigma(f, 4) + 5*sigma(f, 3) - 5*sigma(f, 2) - 6*sigma(f)) / 120; \\ Amiram Eldar, Dec 30 2024

Formula

G.f.: Sum_{k>0} binomial(k+3,5) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+3,5).
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_5(n) + 5*sigma_4(n) + 5*sigma_3(n) - 5*sigma_2(n) - 6*sigma_1(n)) / 120.
Dirichlet g.f.: zeta(s) * (zeta(s-5) + 5*zeta(s-4) + 5*zeta(s-3) - 5*zeta(s-2) - 6*zeta(s-1)) / 120.
Sum_{k=1..n} a(k) ~ (zeta(6)/720) * n^6. (End)

A363611 Expansion of Sum_{k>0} x^(4*k)/(1-x^k)^4.

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 20, 36, 56, 88, 120, 176, 220, 306, 368, 491, 560, 746, 816, 1058, 1160, 1450, 1540, 1982, 2028, 2520, 2656, 3232, 3276, 4116, 4060, 4986, 5080, 6016, 6008, 7457, 7140, 8586, 8656, 10232, 9880, 12116, 11480, 13792, 13668, 15730, 15180, 18652, 17316, 20536
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# - 1, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1-x^k)^4)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 3) - 6*sigma(f, 2) + 11*sigma(f) - 6*numdiv(f)) / 6; \\ Amiram Eldar, Jan 01 2025

Formula

G.f.: Sum_{k>0} binomial(k-1,3) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d-1,3).
From Amiram Eldar, Jan 01 2025: (Start)
a(n) = (sigma_3(n) - 6*sigma_2(n) + 11*sigma_1(n) - 6*sigma_0(n)) / 6.
Dirichlet g.f.: zeta(s) * (zeta(s-3) - 6*zeta(s-2) + 11*zeta(s-1) - 6*zeta(s)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)
Showing 1-7 of 7 results.