cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092364 a(n) = n^2*binomial(n,2).

Original entry on oeis.org

0, 4, 27, 96, 250, 540, 1029, 1792, 2916, 4500, 6655, 9504, 13182, 17836, 23625, 30720, 39304, 49572, 61731, 76000, 92610, 111804, 133837, 158976, 187500, 219700, 255879, 296352, 341446, 391500, 446865, 507904, 574992, 648516, 728875, 816480
Offset: 1

Views

Author

Jon Perry, Mar 19 2004

Keywords

Comments

Coefficient of x^2 in expansion of (1+n*x)^n.
For n>3, a(n) is twice the area of a triangle with vertices at points (C(n-1,3),C(n,3)), (C(n,3),C(n+1,3)), and (C(n+1,3),C(n+2,3)). - J. M. Bergot, Jun 05 2014
Also the Harary index of the n X n rook complement graph for n != 2. - Eric W. Weisstein, Sep 14 2017

Crossrefs

Cf. A085540.

Programs

  • Magma
    [n^3*(n-1)/2: n in [1..50]]; // Wesley Ivan Hurt, Jun 04 2014
  • Maple
    A092364 := proc(n) n^3*(n-1)/2 ; end proc: # R. J. Mathar, Mar 10 2011
  • Mathematica
    f[n_]:=(n^4-n^3)/2; lst={};Do[AppendTo[lst,f[n]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 04 2009 *)
    Table[n^2 Binomial[n, 2], {n, 20}] (* Eric W. Weisstein, Sep 14 2017 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 4, 27, 96, 250}, 20] (* Eric W. Weisstein, Sep 14 2017 *)
    CoefficientList[Series[-((x (4 + 7 x + x^2))/(-1 + x)^5), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 14 2017 *)
  • PARI
    z(n)=n^2*binomial(n,2); for(i=1,40,print1(","z(i)))
    

Formula

a(n) = n^3*(n-1)/2. Equals A085540(n-1)/2. - Zerinvary Lajos, May 09 2007, corrected Mar 10 2011
G.f.: -x^2*(4+7*x+x^2) / (x-1)^5. - R. J. Mathar, Mar 10 2011
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Eric W. Weisstein, Sep 14 2017
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=2} 1/a(n) = 6 - Pi^2/3 - 2*zeta(3).
Sum_{n>=2} (-1)^n/a(n) = Pi^2/6 + 4*log(2) + 3*zeta(3)/2 - 6. (End)
E.g.f.: exp(x)*x^2*(4 + 5*x + x^2)/2. - Stefano Spezia, Jun 10 2023