cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A006002 a(n) = n*(n+1)^2/2.

Original entry on oeis.org

0, 2, 9, 24, 50, 90, 147, 224, 324, 450, 605, 792, 1014, 1274, 1575, 1920, 2312, 2754, 3249, 3800, 4410, 5082, 5819, 6624, 7500, 8450, 9477, 10584, 11774, 13050, 14415, 15872, 17424, 19074, 20825, 22680, 24642, 26714, 28899, 31200, 33620, 36162, 38829, 41624
Offset: 0

Views

Author

Keywords

Comments

a(n) is the largest number that is not the sum of distinct numbers of form kn+1, k >= 0. - David W. Wilson, Dec 11 1999
Sum of the nontriangular numbers between successive triangular numbers. 1, (2), 3, (4, 5), 6, (7, 8, 9), 10, (11, 12, 13, 14), 15, ... Sum of the terms in brackets. Or sum of n consecutive integers beginning with T(n) + 1, where T(n) = n(n+1)/2. - Amarnath Murthy, Aug 27 2005
Apparently this is also the splittance (as defined by Hammer & Simeone, 1977) of the Kneser graphs of the form K(n+3,2). - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jul 13 2009
Row sums of triangle A159797. - Omar E. Pol, Jul 24 2009
The same results occur when one plots the points (1,3), (3,6), (6,10), (10,15), and so on, for all the triangular numbers and finds the area beneath. Take three consecutive triangular numbers and label them a, b, c; the area created is simply (b-a)*(b+c)/2. Thus for 6,10,15 the area beneath the line defined by the points (6,10) and (10,15) is (10-6)*(10+15)/2 = 50. - J. M. Bergot, Jun 28 2011
Let P = ab where a and b are nonequal prime numbers > 1. Let Q be the product of all divisors of P^n. Q can be expressed as P^k, where k = n*(n+1)^2/2. This follows from the fact that all divisors are of the form a^i*b^j, for i,j from 0 to n. An example is given below. In the more general case, where P is the product of m nonequal prime numbers, k = n*(n+1)^m/2. When m=3, the sequence is the same as A092364. - James A. Raymond & Douglas Raymond, Dec 04 2011
For n > 0: sum of n-th row in A014132, seen as a triangle read by rows. - Reinhard Zumkeller, Dec 12 2012
Partial sums of A005449. - Omar E. Pol, Jan 12 2013
a(n) is the sum of x (or y) coordinates for an n X n square lattice in the upper right quadrant of Z^2 whose corner points are (0, 0), (0, n), (n, 0), and (n, n). - Joseph Wheat, Feb 03 2018
a(n) is the number of permutations of [n+2] that contain exactly 2 elements which are not left-to-right minimal. E.g., the 9 permutations comprising a(2) are 2134, 2143, 3124, 3142, 4123, 4132, 2314, 2413, 3412. - Andy Niedermaier, May 07 2022

Examples

			Let P^n=6^2. The product of the divisors of 36 = 10077796 = 6^9, i.e., for n=2, k=9. - _James A. Raymond_ & Douglas Raymond, Dec 04 2011
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002411: -a(-1-n).
Cf. A000914 (partial sums), A005449 (first differences).
Cf. similar sequences of the type n*(n+1)*(n+k)/2 listed in A267370.
A bisection of A330298.

Programs

Formula

G.f.: x*(x + 2)/(1 - x)^4. - Michael Somos, Jan 30 2004
a(n) = (n + 1) * binomial(n+1, 2). - Zerinvary Lajos, Jan 10 2006
a(n) = A035006(n+1)/4. - Johannes W. Meijer, Feb 04 2010
a(n) = 2*binomial(n+1, 2) + 3*binomial(n+1, 3). - Gary Detlefs, Jun 06 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 14 2012
a(n) = A000292(n) + A000330(n). - Omar E. Pol, Jan 11 2013
a(n) = A045991(n+1)/2. - J. M. Bergot, Aug 10 2013
a(n) = Sum_{j=1..n} Sum_{i=1..j} (2*j - i + 1). - Wesley Ivan Hurt, Nov 17 2014
a(n) = Sum_{i=0..n} n*(n - i) + i. - Bruno Berselli, Jan 13 2016
a(n) = t(n, A000217(n)), where t(h,k) = A000217(h) + h*k. - Bruno Berselli, Feb 28 2017
Sum_{n>0} 1/a(n) = 4 - Pi^2/3. - Jaume Oliver Lafont, Jul 11 2017 [corrected by Amiram Eldar, Jan 28 2022]
E.g.f.: exp(x)*x*(4 + 5*x + x^2)/2. - Stefano Spezia, May 21 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/6 + 4*log(2) - 4. - Amiram Eldar, Jan 28 2022
From J.S. Seneschal, Jun 27 2024: (Start)
a(n) = (A002378(n)^2/2)/n = (n+1)/2 * A002378(n).
a(n) = A027480(n) - A000217(n). (End)

A085537 a(n) = n^4 - n^3.

Original entry on oeis.org

0, 0, 8, 54, 192, 500, 1080, 2058, 3584, 5832, 9000, 13310, 19008, 26364, 35672, 47250, 61440, 78608, 99144, 123462, 152000, 185220, 223608, 267674, 317952, 375000, 439400, 511758, 592704, 682892, 783000, 893730, 1015808, 1149984, 1297032, 1457750, 1632960
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2003

Keywords

Comments

For n>=1, a(n) is equal to the number of functions f:{1,2,3,4}->{1,2,...,n} such that for a fixed x in {1,2,3,4} and a fixed y in {1,2,...,n} we have f(x)<>y. - Aleksandar M. Janjic and Milan Janjic, Mar 13 2007
Let K_n denote the complete graph on n (n>1) vertices. The sequence corresponds to the Wiener index of K_n X K_n (Cartesian product of K_n with itself). - K.V.Iyer, Mar 12 2009
Lewis proved that the order of a solvable nonabelian finite group |G| is less than or equal to e^4 - e^3, where when d is an irreducible character degree of G, then there is a positive integer e such that |G| = d(d+e). - Jonathan Vos Post, Jun 21 2012

Crossrefs

A diagonal of A228273.
Cf. A085540 (same sequence with initial 0 dropped).

Programs

  • Mathematica
    Table[(n - 1) n^3, {n, 0, 20}] (* Eric W. Weisstein, Sep 08 2017 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 8, 54, 192, 500}, {0, 20}] (* Eric W. Weisstein, Sep 08 2017 *)
    CoefficientList[Series[2 x^2 (4 + 7 x + x^2)/(1 - x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
  • PARI
    A085537(n) = n^4-n^3

Formula

From R. J. Mathar, Sep 12 2008: (Start)
a(n) = A085540(n-1).
G.f.: 2*x^2*(4 + 7*x + x^2)/(1-x)^5. (End)
a(n) = A000583(n) - A000578(n). - Omar E. Pol, Jun 23 2012
Sum_{n>=2} 1/a(n) = 3 - zeta(2) - zeta(3) = A152419. - Daniel Suteu, Feb 06 2017
a(n) = 2*A092364(n+1). - Bruno Berselli, Sep 08 2017
Sum_{n>=2} (-1)^n/a(n) = Pi^2/12 + 2*log(2) + 3*zeta(3)/4 - 3. - Amiram Eldar, Jul 05 2020
E.g.f.: exp(x)*x^2*(4 + 5*x + x^2). - Stefano Spezia, Jul 06 2021
Product_{n>=2} (1 - 1/a(n)) = A146489. - Amiram Eldar, Nov 22 2022

A221857 Number A(n,k) of shapes of balanced k-ary trees with n nodes, where a tree is balanced if the total number of nodes in subtrees corresponding to the branches of any node differ by at most one; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 1, 1, 0, 1, 1, 4, 3, 4, 1, 0, 1, 1, 5, 6, 1, 4, 1, 0, 1, 1, 6, 10, 4, 9, 4, 1, 0, 1, 1, 7, 15, 10, 1, 27, 1, 1, 0, 1, 1, 8, 21, 20, 5, 16, 27, 8, 1, 0, 1, 1, 9, 28, 35, 15, 1, 96, 81, 16, 1, 0, 1, 1, 10, 36, 56, 35, 6, 25, 256, 81, 32, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Apr 10 2013

Keywords

Examples

			: A(2,2) = 2  : A(2,3) = 3      : A(3,3) = 3          :
:   o     o   :   o    o    o   :   o      o      o   :
:  / \   / \  :  /|\  /|\  /|\  :  /|\    /|\    /|\  :
: o         o : o      o      o : o o    o   o    o o :
:.............:.................:.....................:
: A(3,4) = 6                                          :
:    o        o        o        o       o        o    :
:  /( )\    /( )\    /( )\    /( )\   /( )\    /( )\  :
: o o      o   o    o     o    o o     o   o      o o :
Square array A(n,k) begins:
  1, 1, 1,  1,   1,   1,  1,  1,  1,   1,   1, ...
  1, 1, 1,  1,   1,   1,  1,  1,  1,   1,   1, ...
  0, 1, 2,  3,   4,   5,  6,  7,  8,   9,  10, ...
  0, 1, 1,  3,   6,  10, 15, 21, 28,  36,  45, ...
  0, 1, 4,  1,   4,  10, 20, 35, 56,  84, 120, ...
  0, 1, 4,  9,   1,   5, 15, 35, 70, 126, 210, ...
  0, 1, 4, 27,  16,   1,  6, 21, 56, 126, 252, ...
  0, 1, 1, 27,  96,  25,  1,  7, 28,  84, 210, ...
  0, 1, 8, 81, 256, 250, 36,  1,  8,  36, 120, ...
		

Crossrefs

Rows n=0+1, 2-3, give: A000012, A001477, A179865.
Diagonal and upper diagonals give: A028310, A000217, A000292, A000332, A000389, A000579, A000580, A000581, A000582, A001287, A001288.
Lower diagonals give: A000012, A000290, A092364(n) for n>1.

Programs

  • Maple
    A:= proc(n, k) option remember; local m, r; if n<2 or k=1 then 1
          elif k=0 then 0 else r:= iquo(n-1, k, 'm');
          binomial(k, m)*A(r+1, k)^m*A(r, k)^(k-m) fi
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[n_, k_] := a[n, k] = Module[{m, r}, If[n < 2 || k == 1, 1, If[k == 0, 0, {r, m} = QuotientRemainder[n-1, k]; Binomial[k, m]*a[r+1, k]^m*a[r, k]^(k-m)]]]; Table[a[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 17 2013, translated from Maple *)

A019582 a(n) = n*(n - 1)^3/2.

Original entry on oeis.org

0, 0, 1, 12, 54, 160, 375, 756, 1372, 2304, 3645, 5500, 7986, 11232, 15379, 20580, 27000, 34816, 44217, 55404, 68590, 84000, 101871, 122452, 146004, 172800, 203125, 237276, 275562, 318304, 365835, 418500, 476656, 540672, 610929, 687820, 771750, 863136
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

a(n) = n(n-1)^3/2 is half the number of colorings of 4 points on a line with n colors. - R. H. Hardin, Feb 23 2002
n^2*n(n+1)/2: a(n+1) = product of n-th triangular number and n-th square number. E.g., a(4)=6*9=54. - Alexandre Wajnberg, Dec 18 2005
Also, the number of ways to place two dominoes horizontally in different rows on an n X n chessboard. - Ralf Stephan, Jun 09 2014
a(n) is the second Zagreb index of the complete graph K[n]. The second Zagreb index of a simple connected graph g is the sum of the degree products d(i)d(j) over all edges ij of g. - Emeric Deutsch, Nov 07 2016
a(n+1) is the number of inequivalent 2 X 2 matrices with entries in {1,2,3,...,n} when a matrix and its transpose are considered equivalent. - David Nacin, Feb 27 2017

Examples

			G.f. = x^2 + 12*x^3 + 54*x^4 + 160*x^5 + 375*x^6 + 756*x^7 + 1372*x^8 + ...
		

Crossrefs

A row or column of A132191.

Programs

Formula

a(n+1) = Sum_{k=0..n} n^2(n-k) = n^3*(n+1)/2. - Paul Barry, Sep 02 2003
a(n+1) = A000290(n) * A000217(n). - Zerinvary Lajos, Jan 20 2007
Sum_{j>=2} 1/a(j) = hypergeom([1, 1, 1, 1], [2, 2, 3], 1) = 2 - 2*zeta(2) + 2*zeta(3). - Stephen Crowley, Jun 28 2009
G.f.: -x^2*(4*x^2 + 7*x + 1)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(1 - n) = A092364(n). - Michael Somos, Jun 09 2014
Sum_{n>=2} (-1)^n/a(n) = 3*zeta(3)/2 - zeta(2) + 4*log(2) - 2. - Amiram Eldar, Sep 11 2022
E.g.f.: exp(x)*x^2*(1 + 3*x + x^2)/2. - Stefano Spezia, Jun 10 2023

A085540 a(n) = n*(n + 1)^3.

Original entry on oeis.org

0, 8, 54, 192, 500, 1080, 2058, 3584, 5832, 9000, 13310, 19008, 26364, 35672, 47250, 61440, 78608, 99144, 123462, 152000, 185220, 223608, 267674, 317952, 375000, 439400, 511758, 592704, 682892, 783000, 893730, 1015808, 1149984, 1297032, 1457750, 1632960
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2003

Keywords

Crossrefs

Cf. A085537 (same sequence with a 0 prepended), A092364.

Programs

Formula

a(n) = 2*A092364(n+1). - Zerinvary Lajos, May 09 2007
G.f.: -2*x*(4 + 7*x + x^2)/(x - 1)^5. - R. J. Mathar, Mar 10 2011
a(n) = A085537(n-1). - Eric W. Weisstein, Sep 08 2017
E.g.f.: exp(x)*x*(8 + 19*x + 9*x^2 + x^3). - Stefano Spezia, Jun 10 2023
From Amiram Eldar, Jul 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 3 - Pi^2/6 - zeta(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 + 2*log(2) + 3*zeta(3)/4 - 3. (End)

A239592 a(n) = (n^4 - n^3 + 4*n^2 + 2)/2.

Original entry on oeis.org

1, 3, 13, 46, 129, 301, 613, 1128, 1921, 3079, 4701, 6898, 9793, 13521, 18229, 24076, 31233, 39883, 50221, 62454, 76801, 93493, 112773, 134896, 160129, 188751, 221053, 257338, 297921, 343129, 393301, 448788, 509953, 577171, 650829, 731326, 819073, 914493
Offset: 0

Views

Author

Philippe Deléham, Mar 22 2014

Keywords

Comments

Main diagonal of square array A239331.

Crossrefs

Cf. A239331.

Programs

  • Magma
    [(n^4-n^3+4*n^2 + 2)/2: n in [0..40]]; // Vincenzo Librandi, Mar 23 2014
  • Mathematica
    CoefficientList[Series[(1 - 2 x + 8 x^2 + x^3 + 4 x^4)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
  • PARI
    Vec((1-2*x+8*x^2+x^3+4*x^4)/(1-x)^5 + O(x^100)) \\ Colin Barker, Mar 22 2014
    

Formula

G.f.: (1 - 2*x + 8*x^2 + x^3 + 4*x^4)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), a(0) = 1, a(1) = 3, a(2) = 13, a(3) = 46, a(4) = 129.
a(n) = A058331(n) + A092364(n).

A289710 Triangle T(n,r) read by rows: order of the semigroup of orientation-preserving partial transformations of n elements with breath r.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 9, 27, 24, 1, 16, 96, 208, 128, 1, 25, 250, 950, 1325, 610, 1, 36, 540, 3120, 7290, 7416, 2742, 1, 49, 1029, 8330, 28665, 47922, 38563, 11970, 1, 64, 1792, 19264, 90720, 219968, 287168, 191808, 51424, 1, 81, 2916, 40068, 246078, 806274, 1509732, 1619676, 926073, 218718
Offset: 0

Views

Author

R. J. Mathar, Sep 02 2017

Keywords

Examples

			1 ;
1 1;
1 4 4;
1 9 27 24;
1 16 96 208 128;
1 25 250 950 1325 610;
1 36 540 3120 7290 7416 2742;
1 49 1029 8330 28665 47922 38563 11970;
1 64 1792 19264 90720 219968 287168 191808 51424;
1 81 2916 40068 246078 806274 1509732 1619676 926073 218718;
		

Crossrefs

Cf. A092364 (column r=2), A289713 (row sums)

Programs

  • Maple
    A289710 := proc(n,r)
        if r = 0 then
            1;
        else
            r*binomial(n,r)*binomial(n+r-1,n-1)-n*(r-1)*binomial(n,r) ;
        end if ;
    end proc:

A345632 Sum of terms of even index in the binomial decomposition of n^(n-1).

Original entry on oeis.org

1, 1, 5, 28, 353, 3376, 66637, 908608, 24405761, 432891136, 14712104501, 321504185344, 13218256749601, 343360783937536, 16565151205544957, 498676704524517376, 27614800115689879553, 945381827279671853056, 59095217374989483261925, 2267322327322331161821184, 157904201452248753415276001
Offset: 1

Views

Author

Olivier Gérard, Jun 21 2021

Keywords

Comments

When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the even part.

Crossrefs

Cf. A345633 (odd part).

Programs

  • Mathematica
    Table[Plus @@ Table[(n-1)^(2 k) Binomial[n-1, 2 k], {k, 0, Floor[n/2]}], {n, 1, 21}]

Formula

a(n+1) = Sum_{k=0..floor(n/2)} n^(2k) binomial(n, 2k).
a(n+1) = ((1 - n)^n + (1 + n)^n)/2. - Stefano Spezia, Jun 21 2021

A345633 Sum of terms of odd index in the binomial decomposition of n^(n-1).

Original entry on oeis.org

0, 1, 4, 36, 272, 4400, 51012, 1188544, 18640960, 567108864, 11225320100, 421504185344, 10079828372880, 450353989316608, 12627774819845668, 654244800082329600, 21046391759976988928, 1240529732459024678912, 45032132922921758270916, 2975557672677668838178816
Offset: 1

Views

Author

Olivier Gérard, Jun 21 2021

Keywords

Comments

When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the odd part. See the Formula section.

Crossrefs

Cf. A345632 (even part).

Programs

  • Mathematica
    Table[Plus @@ Table[(n - 1)^(2 k + 1) Binomial[n - 1, 2 k + 1], {k, 0, Floor[(n - 1)/2]}], {n, 1, 21}]

Formula

a(n+1) = Sum_{k=0..floor((n-1)/2)} n^(2k+1)*binomial(n, 2k+1).
a(n+1) = ((1 + n)^n - (1 - n)^n)/2.
Showing 1-9 of 9 results.