A092498 Expansion of g.f. (1 + x + 2*x^2)/((1 - x)^3*(1 - x^3)).
1, 4, 11, 23, 41, 67, 102, 147, 204, 274, 358, 458, 575, 710, 865, 1041, 1239, 1461, 1708, 1981, 2282, 2612, 2972, 3364, 3789, 4248, 4743, 5275, 5845, 6455, 7106, 7799, 8536, 9318, 10146, 11022, 11947, 12922, 13949, 15029, 16163, 17353, 18600, 19905, 21270
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,3,-1).
Crossrefs
Cf. A014126.
Cf. A000969 (first differences). - R. J. Mathar, Jan 05 2009
Programs
-
Maple
A092498:=n->(4*n^3+21*n^2+35*n+18-6*floor((n+2)/3))/18; seq(A092498(n), n=0..50); # Wesley Ivan Hurt, Apr 19 2014
-
Mathematica
Table[(4*n^3 + 21*n^2 + 35*n + 18 - 6*Floor[(n + 2)/3])/18, {n, 0, 50}] (* Wesley Ivan Hurt, Apr 19 2014 *) CoefficientList[Series[(1 + x + 2 x^2)/((1 - x)^3 (1 -x^3)), {x, 0, 40 }], x] (* Vincenzo Librandi, Apr 20 2014 *) LinearRecurrence[{3,-3,2,-3,3,-1},{1,4,11,23,41,67},50] (* Harvey P. Dale, Jul 08 2017 *)
Formula
a(n) = (4*n^3+21*n^2+35*n+18-6*floor((n+2)/3))/18. - Luce ETIENNE, Apr 18 2014
a(n) = Sum_{j=0..floor(2*n/3)} ((4*n+5-6*j-(-1)^j)/4)*((4*n+3-6*j+(-1)^j)/4). - Luce ETIENNE, Oct 28 2014
E.g.f.: exp(-x/2)*(3*exp(3*x/2)*(2 + x)*(8 + 25*x + 4*x^2) + 6*cos(sqrt(3)*x/2) - 2*sqrt(3)*sin(sqrt(3)*x/2))/54. - Stefano Spezia, Apr 05 2023
Extensions
Edited by N. J. A. Sloane, May 15 2014
Comments