cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A134507 Number of rectangles in a pyramid built with squares. The squares counted in A092498 are excluded.

Original entry on oeis.org

0, 4, 19, 57, 134, 269, 486, 813, 1281, 1926, 2788, 3910, 5340, 7130, 9335, 12015, 15234, 19059, 23562, 28819, 34909, 41916, 49928, 59036, 69336, 80928, 93915, 108405, 124510, 142345, 162030, 183689, 207449, 233442, 261804, 292674, 326196
Offset: 1

Views

Author

Philippe Lallouet (philip.lallouet(AT)orange.fr), Jan 19 2008

Keywords

Comments

At the first step, the pyramid contains only one unitary square. At each step of rank n we add a row of 2*n-1 squares below the previous pyramid. The sequence is the number of rectangles of any size which can be seen in this pyramid of height n.
..........._.
|..|.........|..|
||......_|__|
..........|..|..|..|
..0.......||__|| 3 rectangles 2X1, 1 rectangle 3X1

Examples

			G.f. = 4*x^2 + 19*x^3 + 57*x^4 + 134*x^5 + 269*x^6 + 486*x^7 + 813*x^8 + ...
		

Crossrefs

Cf. A092498.

Programs

  • Magma
    I:=[0,4,19,57,134,269,486]; [n le 7 select I[n] else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-5*Self(n-4)+6*Self(n-5)-4*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Mar 01 2014
  • Mathematica
    a[ n_] := SeriesCoefficient[ x^2 (4 + 3 x + 5 x^2) / ((1 - x)^5 (1 + x + x^2)), {x, 0, n}]; (* Michael Somos, Feb 25 2014 *)
    a[ n_] := Quotient[ 3 n^4 + 5 n^3 - 3 n^2 - 3 n + 2, 18]; (* Michael Somos, Feb 25 2014 *)
    CoefficientList[Series[-x (5 x^2 + 3 x + 4)/((x - 1)^5 (x^2 + x + 1)), {x, 0, 40}], x] (* _Vincenzo Librandi Mar 01 2014 *)
  • PARI
    {a(n) = (3*n^4 + 5*n^3 - 3*n^2 - 3*n + 2) \ 18}; /* Michael Somos, Feb 17 2008 */
    

Formula

For n == 0 mod 3, a(n) = n*(3*n^3+5*n^2-3*n-3)/18; for n == 1 mod 3, a(n) = (n-1)*(3*n^3+8*n^2+5*n+2)/18; for n == 2 mod 3, a(n) = (3*n^4+5*n^3-3*n^2-3*n+2)/18. [corrected and edited by Michel Marcus, Apr 09 2024]
G.f.: -x^2*(5*x^2+3*x+4)/((x-1)^5*(x^2+x+1)). [Colin Barker, Nov 16 2012]
a(n) = (3*n^4+5*n^3-3*n^2-5*n+6*floor((n+1)/3))/18. - Luce ETIENNE, Jul 31 2015

A260918 Number of squares of all sizes in polyominoes obtained by union of two pyramidal figures (A092498) with intersection equals A002623.

Original entry on oeis.org

0, 1, 5, 15, 33, 60, 100, 154, 224, 313, 423, 555, 713, 898, 1112, 1358, 1638, 1953, 2307, 2701, 3137, 3618, 4146, 4722, 5350, 6031, 6767, 7561, 8415, 9330, 10310, 11356, 12470, 13655, 14913, 16245, 17655, 19144, 20714, 22368, 24108, 25935, 27853, 29863
Offset: 0

Views

Author

Luce ETIENNE, Aug 04 2015

Keywords

Comments

The resulting polyforms are n*(3*n-1)/2-polyominoes.
Also they are 6*n-gons with n>1.
Schäfli's notation for figure corresponding to a(1): 4.

Examples

			a(1)=1, a(2)=5, a(3)=12+3=15, a(4)=22+9+2=33, a(5)=35+18+7=60, a(6)=51+30+15+4=100.
		

Crossrefs

Programs

  • Magma
    [(52*n^3+90*n^2+20*n-3*(32*Floor((n+1)/3)+3*(1-(-1)^n)))/144: n in [0..50]]; // Vincenzo Librandi, Aug 12 2015
  • Mathematica
    Table[(52 n^3 + 90 n^2 + 20 n - 3 (32 Floor[(n + 1) / 3] + 3 (1 - (-1)^n))) / 144, {n, 0, 45}] (* Vincenzo Librandi, Aug 12 2015 *)
  • PARI
    concat(0, Vec(x*(4*x^3+5*x^2+3*x+1)/((x-1)^4*(x+1)*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Aug 08 2015
    

Formula

a(n) = A258440(n) - A000212(n+1).
a(n) = (1/8)*((Sum_{i=0..floor(2*n/3)} (4*n+1-6*i-(-1)^i)*(4*n-1-6*i+(-1)^i)) - (Sum_{j=0..(2*n-1+(-1)^n)/4} (2*n+1-(-1)^n-4*j)*(2*n+1+(-1)^n-4*j))).
a(n) = (52*n^3+90*n^2+20*n-3*(32*floor((n+1)/3)+3*(1-(-1)^n)))/144.
G.f.: x*(4*x^3+5*x^2+3*x+1) / ((x-1)^4*(x+1)*(x^2+x+1)). - Colin Barker, Aug 08 2015
E.g.f.: (3*exp(x)*x*(65 + x*(123 + 26*x)) + 32*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2) - 27*sinh(x))/216. - Stefano Spezia, Nov 15 2024

Extensions

Two repeated terms deleted by Colin Barker, Aug 08 2015

A131177 Duplicate of A092498.

Original entry on oeis.org

1, 4, 11, 23, 41, 67, 102, 147, 204, 274, 358, 458, 575, 710, 865, 1041, 1239, 1461
Offset: 1

Views

Author

Keywords

A000969 Expansion of g.f. (1 + x + 2*x^2)/((1 - x)^2*(1 - x^3)).

Original entry on oeis.org

1, 3, 7, 12, 18, 26, 35, 45, 57, 70, 84, 100, 117, 135, 155, 176, 198, 222, 247, 273, 301, 330, 360, 392, 425, 459, 495, 532, 570, 610, 651, 693, 737, 782, 828, 876, 925, 975, 1027, 1080, 1134, 1190, 1247, 1305, 1365, 1426, 1488, 1552, 1617, 1683, 1751, 1820, 1890
Offset: 0

Views

Author

Keywords

Comments

From Paul Curtz, Oct 07 2018: (Start)
Terms that are on the x-axis of the following spiral (without 0):
28--29--29--30--31--31--32
|
27 13--14--15--15--16--17
| | |
27 13 4---5---5---6 17
| | | | |
26 12 3 0---1 7 18
| | | | | |
25 11 3---2---1 7 19
| | | |
25 11--10---9---9---8 19
| |
24--23--23--22--21--21--20 (End)
Diagonal 1, 4, 8, 13, 20, 28, ... (without 0) is A143978. - Bruno Berselli, Oct 08 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A004773 (first differences), A092498 (partial sums).

Programs

  • Haskell
    a000969 = flip div 3 . a014105 . (+ 1)  -- Reinhard Zumkeller, Jun 23 2015
    
  • Magma
    [Floor(Binomial(2*n+3,2)/3): n in [0..60]]; // G. C. Greubel, Apr 18 2023
    
  • Maple
    A000969:=-(1+z+2*z**2)/(z**2+z+1)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[x_, y_]:= Floor[Abs[y/x -x/y]]; Table[f[3, 2n^2+n+2], {n,53}] (* Robert G. Wilson v, Aug 11 2010 *)
    CoefficientList[Series[(1+x+2*x^2)/((1-x)^2*(1-x^3)), {x, 0, 50}], x] (* Stefano Spezia, Oct 08 2018 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,-2,1,-1,2]^n*[1;3;7;12;18])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • SageMath
    [(binomial(2*n+3,2)//3) for n in range(61)] # G. C. Greubel, Apr 18 2023

Formula

a(n) = floor( (2*n+3)*(n+1)/3 ). Or, a(n) = (2*n+3)*(n+1)/3 but subtract 1/3 if n == 1 mod 3. - N. J. A. Sloane, May 05 2010
a(2^k-2) = A139250(2^k-1), k >= 1. - Omar E. Pol, Feb 13 2010
a(n) = Sum_{i=0..n} floor(4*i/3). - Enrique Pérez Herrero, Apr 21 2012
a(n) = +2*a(n-1) -1*a(n-2) +1*a(n-3) -2*a(n-4) +1*a(n-5). - Joerg Arndt, Apr 22 2012
a(n) = A014105(n+1) = A258708(n+3,n). - Reinhard Zumkeller, Jun 23 2015
Sum_{n>=0} 1/a(n) = 6 - Pi/sqrt(3) - 10*log(2)/3. - Amiram Eldar, Oct 01 2022
E.g.f.: (exp(x)*(8 + 21*x + 6*x^2) + exp(-x/2)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/9. - Stefano Spezia, Apr 05 2023

A014126 Number of partitions of 2*n into at most 4 parts.

Original entry on oeis.org

1, 2, 5, 9, 15, 23, 34, 47, 64, 84, 108, 136, 169, 206, 249, 297, 351, 411, 478, 551, 632, 720, 816, 920, 1033, 1154, 1285, 1425, 1575, 1735, 1906, 2087, 2280, 2484, 2700, 2928, 3169, 3422, 3689, 3969, 4263, 4571, 4894, 5231, 5584, 5952, 6336, 6736, 7153, 7586
Offset: 0

Views

Author

Keywords

Comments

Bisection of A001400.
Molien series for 4-dimensional group of structure S_4 X C_2 and order 48, arising from complete weight enumerators of even trace-Hermitian self-dual additive codes over GF(4) containing the all-ones vector.
Partial sums of A156040. - Bob Selcoe, Feb 08 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct): seq(count(Partition((2*n+4)), size=4), n=0..50); # Zerinvary Lajos, Mar 28 2008
  • Mathematica
    CoefficientList[Series[(1 + x^2) / ((1 - x)^2 (1 - x^2) (1 - x^3)), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 15 2013 *)
    LinearRecurrence[{2,0,-1,-1,0,2,-1},{1,2,5,9,15,23,34},50] (* Harvey P. Dale, Aug 31 2015 *)
  • PARI
    a(n)=(4*n^3+30*n^2+72*n+55+8*[1,-1,0][(n%3)+1]+9*(-1)^n)/72

Formula

G.f.: (1+x^2)/((1-x)^2*(1-x^2)*(1-x^3)). - James Sellers
a(n) = (1/72) * (4*n^3 + 30*n^2 + 72*n + 55 + 8*A049347(n) + 9*(-1)^n ). - Ralf Stephan, Aug 15 2013
E.g.f.: exp(-x)*(27 + 3*exp(2*x)*(55 + 106*x + 42*x^2 + 4*x^3) + 8*exp(x/2)*(3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/216. - Stefano Spezia, Apr 05 2023

A241526 Number of different positions in which a square with side length k, 1 <= k <= n - floor(n/3), can be placed within a bi-symmetric triangle of 1 X 1 squares of height n.

Original entry on oeis.org

2, 7, 16, 31, 53, 83, 123, 174, 237, 314, 406, 514, 640, 785, 950, 1137, 1347, 1581, 1841, 2128, 2443, 2788, 3164, 3572, 4014, 4491, 5004, 5555, 6145, 6775, 7447, 8162, 8921, 9726, 10578, 11478, 12428, 13429, 14482, 15589, 16751, 17969, 19245, 20580, 21975
Offset: 1

Views

Author

Keywords

Examples

			The bi-symmetric triangle of 1 X 1 squares of height 5 is:
                   ___
                 _|_|_|_
               _|_|_|_|_|_
             _|_|_|_|_|_|_|_
           _|_|_|_|_|_|_|_|_|_
          |_|_|_|_|_|_|_|_|_|_|
.
No. of positions in which a 1 X 1 square can be placed = 2 + 4 + 6 + 8 + 10 = 30.
No. of positions in which a 2 X 2 square can be placed = 1 + 3 + 5 + 7 = 16.
No. of positions in which a 3 X 3 square can be placed = 2 + 4 = 6.
No. of positions in which a 4 X 4 square can be placed = 1.
Thus, a(5) = 30 + 16 + 6 + 1 = 53.
		

Crossrefs

Cf. A092498.

Programs

  • Maple
    a := proc (n::integer)::integer;
           (2/9)*n^3+(5/6)*n^2+(17/18)*n-(1/3)*floor((1/3)*n)
         end proc:
    seq(a(n), n = 1..60);
  • PARI
    Vec(x*(x^2+x+2)/((x-1)^4*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Apr 26 2014

Formula

a(n) = sum_{j=0..n-1-floor(n/3)} ((4*n-6*j+1-(-1)^j)/4)*((4*n-6*j+3+(-1)^j)/4).
a(n) = (4*n^3+15*n^2+17*n-6*floor(n/3))/18.
G.f.: x*(x^2+x+2) / ((x-1)^4*(x^2+x+1)). - Colin Barker, Apr 26 2014

A231180 Let A={2,3,6,8,9,11,14,...} be the sequence of numbers k>=1 such that k+5 is odious (A000069). Let B be the complement of A. The sequence lists numbers for which the number of A-divisors equals the number of B-divisors.

Original entry on oeis.org

1, 4, 9, 16, 36, 121, 144, 289, 441, 484, 529, 1156, 1369, 1600, 1764, 2025, 2116, 2209, 3249, 3481, 4624, 5041, 5476, 6241, 6889, 7056, 7569, 7921, 8100, 8464, 8649, 8836, 11449, 12321, 12769, 12996, 13924, 14641, 15129, 16641, 20164, 24336, 24649, 24964
Offset: 1

Views

Author

Keywords

Comments

All terms are perfect squares.

Examples

			n=16 has 4 proper divisors {1,2,4,8} from which 2 from A {2,8} and 2 from B {1,4}. So 16 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    odiousQ[n_]:=OddQ[DigitCount[n,2][[1]]];
    Select[Range[200],0==Length[#]-2Length[Select[#,odiousQ[#+5]&]]&[Most[Divisors[#^2]]]&]^2 (* Peter J. C. Moses, Nov 08 2013 *)
Showing 1-7 of 7 results.