A134507 Number of rectangles in a pyramid built with squares. The squares counted in A092498 are excluded.
0, 4, 19, 57, 134, 269, 486, 813, 1281, 1926, 2788, 3910, 5340, 7130, 9335, 12015, 15234, 19059, 23562, 28819, 34909, 41916, 49928, 59036, 69336, 80928, 93915, 108405, 124510, 142345, 162030, 183689, 207449, 233442, 261804, 292674, 326196
Offset: 1
Examples
G.f. = 4*x^2 + 19*x^3 + 57*x^4 + 134*x^5 + 269*x^6 + 486*x^7 + 813*x^8 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,5,-5,6,-4,1).
Crossrefs
Cf. A092498.
Programs
-
Magma
I:=[0,4,19,57,134,269,486]; [n le 7 select I[n] else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-5*Self(n-4)+6*Self(n-5)-4*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Mar 01 2014
-
Mathematica
a[ n_] := SeriesCoefficient[ x^2 (4 + 3 x + 5 x^2) / ((1 - x)^5 (1 + x + x^2)), {x, 0, n}]; (* Michael Somos, Feb 25 2014 *) a[ n_] := Quotient[ 3 n^4 + 5 n^3 - 3 n^2 - 3 n + 2, 18]; (* Michael Somos, Feb 25 2014 *) CoefficientList[Series[-x (5 x^2 + 3 x + 4)/((x - 1)^5 (x^2 + x + 1)), {x, 0, 40}], x] (* _Vincenzo Librandi Mar 01 2014 *)
-
PARI
{a(n) = (3*n^4 + 5*n^3 - 3*n^2 - 3*n + 2) \ 18}; /* Michael Somos, Feb 17 2008 */
Formula
For n == 0 mod 3, a(n) = n*(3*n^3+5*n^2-3*n-3)/18; for n == 1 mod 3, a(n) = (n-1)*(3*n^3+8*n^2+5*n+2)/18; for n == 2 mod 3, a(n) = (3*n^4+5*n^3-3*n^2-3*n+2)/18. [corrected and edited by Michel Marcus, Apr 09 2024]
G.f.: -x^2*(5*x^2+3*x+4)/((x-1)^5*(x^2+x+1)). [Colin Barker, Nov 16 2012]
a(n) = (3*n^4+5*n^3-3*n^2-5*n+6*floor((n+1)/3))/18. - Luce ETIENNE, Jul 31 2015
Comments