1, 1, 1, 2, 1, 2, 3, 3, 2, 3, 6, 5, 5, 3, 6, 11, 10, 8, 9, 6, 11, 21, 18, 17, 15, 17, 11, 21, 39, 35, 32, 32, 28, 32, 21, 39, 74, 67, 64, 60, 60, 53, 60, 39, 74, 141, 131, 124, 120, 113, 113, 99, 113, 74, 141, 272, 255, 244, 233, 226, 212, 212, 187, 215, 141, 272, 527, 499
Offset: 0
Rows begin:
1;
1, 1;
2, 1, 2;
3, 3, 2, 3;
6, 5, 5, 3, 6;
11, 10, 8, 9, 6, 11;
21, 18, 17, 15, 17, 11, 21;
39, 35, 32, 32, 28, 32, 21, 39;
74, 67, 64, 60, 60, 53, 60, 39, 74;
141, 131, 124, 120, 113, 113, 99, 113, 74, 141;
272, 255, 244, 233, 226, 212, 212, 187, 215, 141, 272;
527, 499, 477, 459, 438, 424, 399, 402, 356, 413, 272, 527;
1026, 976, 936, 897, 862, 823, 801, 758, 769, 685, 799, 527, 1026; ...
The convolution of each row with {1,1} gives the triangle:
1, 1;
1, 2, 1;
2, 3, 3, 2;
3, 6, 5, 5, 3;
6, 11, 10, 8, 9, 6;
11, 21, 18, 17, 15, 17, 11;
21, 39, 35, 32, 32, 28, 32, 21;
39, 74, 67, 64, 60, 60, 53, 60, 39; ...
which, when flattened, equals the original triangle in flattened form.
A120899
G.f. satisfies: A(x) = C(x)^2 * A(x^3*C(x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).
Original entry on oeis.org
1, 2, 5, 16, 54, 186, 654, 2338, 8463, 30938, 114022, 423096, 1579049, 5922512, 22309350, 84354388, 320020227, 1217689680, 4645693038, 17766596202, 68092473570, 261486788434, 1005962436536, 3876412305114, 14960183283203
Offset: 0
A(x) = 1 + 2*x + 5*x^2 + 16*x^3 + 54*x^4 + 186*x^5 + 654*x^6 +...
= C(x)^2 * A(x^3*C(x)^4) where
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
is the g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2.
-
{a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+2*x+x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C^2*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}
A120895
G.f. satisfies: A(x) = G(x)*A(x^3*G(x)^2) where G(x) is the g.f. of the Motzkin numbers (A001006).
Original entry on oeis.org
1, 1, 2, 5, 12, 30, 78, 206, 552, 1498, 4105, 11340, 31541, 88237, 248076, 700478, 1985397, 5646129, 16104378, 46056513, 132031176, 379315946, 1091890772, 3148736064, 9095091878, 26310816944, 76219704957, 221085782559, 642058752476, 1866693825362, 5432795508417
Offset: 0
A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 30*x^5 + 78*x^6 + 206*x^7+...
= G(x)*A(x^3*G(x)^2) where
G(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 51*x^6 + 127*x^7 +...
is the g.f. of the Motzkin numbers (A001006) so that G(x) satisfies:
G(x) = 1 + x*G(x) + x^2*G(x)^2.
-
{a(n)=local(A=1+x,G=1/x*serreverse(x/(1+x+x^2+x*O(x^n)))); for(i=0,n,A=G*subst(A,x,x^3*G^2 +x*O(x^n)));polcoeff(A,n,x)}
A120920
G.f. satisfies: A(x) = G(x)^3 * A(x^4*G(x)^9), where G(x) is the g.f. of the number of ternary trees (A001764): G(x) = 1 + x*G(x)^3.
Original entry on oeis.org
1, 3, 12, 55, 276, 1464, 8058, 45543, 262626, 1538607, 9130446, 54761628, 331403447, 2021021082, 12407102937, 76611488305, 475493441604, 2964664310319, 18560063203353, 116621922800283, 735236268006654
Offset: 0
A(x) = 1 + 3*x + 12*x^2 + 55*x^3 + 276*x^4 + 1464*x^5 + 8058*x^6 +...
= G(x)^3 * A(x^4*G(x)^9) where
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
is g.f. of A001764: G(x) = 1 + x*G(x)^3.
-
{a(n)=local(A=1+x,G=(1/x*serreverse(x/(1+3*x+3*x^2+x^3+x*O(x^n))))^(1/3)); for(i=0,n,A=G^3*subst(A,x,x^4*G^9 +x*O(x^n)));polcoeff(A,n,x)}
A120915
G.f. satisfies: A(x) = C(2x)^2 * A(x^3*C(2x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).
Original entry on oeis.org
1, 4, 20, 116, 720, 4656, 30996, 210896, 1459536, 10239796, 72651184, 520328112, 3756512912, 27307671040, 199705789248, 1468209751856, 10844681408064, 80437588353600, 598867568439828, 4473784063109904, 33524058847464912
Offset: 0
A(x) = 1 + 4*x + 20*x^2 + 116*x^3 + 720*x^4 + 4656*x^5 + 30996*x^6 +...
= C(2x)^2 * A(x^3*C(2x)^4) where
C(2x) = 1 + 2*x + 8*x^2 + 40*x^3 + 224*x^4 + 1344*x^5 + 8448*x^6 +...
and C(x) is g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2.
-
{a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+4*x+4*x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C^2*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}
A092685
Row sums of triangle A092683, in which the convolution of each row with {1,1} produces a triangle that, when flattened, equals the flattened form of A092683.
Original entry on oeis.org
1, 2, 5, 11, 25, 55, 120, 258, 551, 1169, 2469, 5193, 10885, 22746, 47404, 98553, 204443, 423259, 874680, 1804556, 3717348, 7647075, 15711194, 32242013, 66096274, 135366764, 276988466, 566312984, 1156974619, 2362043602
Offset: 0
-
{T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,1, if(k==n,T(n,0), T(n-1,k)+T(n-1,k+1)))))}
a(n)=sum(k=0,n,T(n,k))
-
{a(n)=local(A,F=1+x,d=1,G=x,H=1+x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); sum(k=0,2*n,polcoeff(polcoeff(A,n,x),k,y))} \\ Paul D. Hanna, Jul 17 2006
A352039
a(0) = 1; a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * a(k).
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 6, 9, 13, 20, 32, 51, 82, 133, 215, 346, 555, 886, 1408, 2231, 3528, 5572, 8797, 13892, 21950, 34707, 54919, 86958, 137761, 218339, 346178, 549073, 871261, 1383243, 2197542, 3494019, 5560580, 8858687, 14128865, 22560717, 36067022, 57725840
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 2 k, k] a[k], {k, 0, Floor[n/3]}]; Table[a[n], {n, 0, 41}]
nmax = 41; A[] = 1; Do[A[x] = A[x^3/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A352041
a(0) = 1; a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * a(k).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 96, 136, 196, 285, 417, 614, 909, 1349, 2002, 2968, 4394, 6493, 9572, 14074, 20639, 30189, 44049, 64123, 93151, 135080, 195599, 282915, 408884, 590658, 853080, 1232168, 1780190, 2573059, 3721103
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 3 k, k] a[k], {k, 0, Floor[n/4]}]; Table[a[n], {n, 0, 44}]
nmax = 44; A[] = 1; Do[A[x] = A[x^4/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Comments