cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049034 Scaled sums of odd reciprocals.

Original entry on oeis.org

1, 8, 184, 8448, 648576, 74972160, 12174658560, 2643856588800, 740051782041600, 259500083163955200, 111422936937037824000, 57504006817918746624000, 35122852492484487413760000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n) mod n^2 = 2*n if n is an odd prime, otherwise 0. - Gary Detlefs, Apr 16 2012

Examples

			(arctanh x)^2 = x^2 + 2/3*x^4 + 23/45*x^6 + 44/105*x^8 + ...
		

Crossrefs

Bisection of A081358 and A092692: a(n) = A081358(2n+1) = A092692(2n+1).

Programs

  • Mathematica
    Module[{nn=25,c},c=Range[1,nn,2];Times@@@Thread[{Accumulate[1/c],c!}]](* Harvey P. Dale, Nov 20 2013 *)
  • PARI
    {a(n)=if(n<0, 0, n=2*n+1; n!*sum(k=1, n, (k%2)/k))} /* Michael Somos, Sep 19 2006 */

Formula

a(n) = (2*n+1)! * sum[ k=0..n ] 1/(2*k+1).
E.g.f. (arctanh x)^2/2 = sum_n a(n)x^(2n+2)/(2n+2)! or (arctanh x)/(1-x^2) = sum_n a(n)x^(2n+1)/(2n+1)!.

A109792 Expansion of e.g.f. log(1+x)/(1-x)^2.

Original entry on oeis.org

1, 3, 14, 70, 444, 3108, 25584, 230256, 2342880, 25771680, 312888960, 4067556480, 57424792320, 861371884800, 13869128448000, 235775183616000, 4264876094976000, 81032645804544000, 1627055289796608000, 34168161085728768000, 754132445894209536000, 17345046255566819328000
Offset: 1

Views

Author

Vladeta Jovovic, Aug 14 2005

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Log[1+x]/(1-x)^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
    a[n_] := n! ((-1)^n (n + 1) LerchPhi[-1, 1, n + 2] + Log[2] (n + 1) + ((-1)^(n + 1) - 1) /2); Table[Simplify[a[n]], {n, 1, 22}] (* Peter Luschny, Jun 22 2022 *)
  • PARI
    for(n=1,25, print1(n!*sum(k=1,n, sum(i=1, k, (-1)^(i+1)/i)), ", ")) \\ G. C. Greubel, Jan 21 2017

Formula

a(n) = n!*Sum_{k=1..n} Sum_{i=1..k} (-1)^(i+1)/i.
a(n) ~ n!*n*log(2). - Vaclav Kotesovec, Jun 27 2013
a(n) = n!*((-1)^n*(n + 1)*LerchPhi(-1, 1, n + 2) + log(2)*(n + 1) + ((-1)^(n + 1) - 1) / 2). - Peter Luschny, Jun 22 2022

A330016 a(n) = Sum_{k=1..n} (-1)^(n - k) * H(k) * k!, where H(k) is the k-th harmonic number.

Original entry on oeis.org

0, 1, 2, 9, 41, 233, 1531, 11537, 98047, 928529, 9700111, 110843729, 1375599151, 18427159889, 265038487471, 4074124514129, 66660157879471, 1156745432699729, 21220242625821871, 410344904191816529, 8342603132569783471, 177902207647600456529, 3970574571687854263471
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) HarmonicNumber[k] k!, {k, 1, n}], {n, 0, 22}]

Formula

a(n) = Sum_{k=1..n} (-1)^(n - k) * |Stirling1(k+1,2)|.
Showing 1-3 of 3 results.