A094159 3 times hexagonal numbers: a(n) = 3*n*(2*n-1).
0, 3, 18, 45, 84, 135, 198, 273, 360, 459, 570, 693, 828, 975, 1134, 1305, 1488, 1683, 1890, 2109, 2340, 2583, 2838, 3105, 3384, 3675, 3978, 4293, 4620, 4959, 5310, 5673, 6048, 6435, 6834, 7245, 7668, 8103, 8550, 9009, 9480, 9963, 10458, 10965, 11484
Offset: 0
References
- Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Hans G. Oberlack, Triangle spiral.
- R. C. Schroeppel, A few mathematical experiments, Experimental Mathematics Workshop, Oakland, California, March 30, 2004.
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n -> 3*n*(2*n-1)); # G. C. Greubel, Dec 07 2018
-
Magma
[3*n*(2*n-1): n in [0..50]]; // G. C. Greubel, Dec 07 2018
-
Maple
A094159:=n->3*n*(2*n-1); seq(A094159(n), n=0..40); # Wesley Ivan Hurt, Mar 28 2014
-
Mathematica
CoefficientList[Series[3x(1+3x)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 19 2013 *) Table[3n(2n-1), {n, 0, 50}] (* or *) 3*PolygonalNumber[6, Range[0, 50]] (* or *) LinearRecurrence[{3, -3, 1}, {3, 18, 45}, {0, 50}] (* Eric W. Weisstein, Sep 07 2017 *)
-
PARI
a(n)=3*n*(2*n-1) \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[3*n*(2*n-1) for n in range(50)] # G. C. Greubel, Dec 07 2018
Formula
a(n) = 6*n^2 - 3*n = 3*n*(2*n-1) = 3*A000384(n). - Omar E. Pol, Dec 11 2008
a(n) = 12*n + a(n-1) - 9 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 16 2010
G.f.: 3*x*(1+3*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
Sum_{n>0} 1/a(n) = (2/3)*log(2). - Enrique Pérez Herrero, Jun 04 2015
E.g.f.: 3*x*(1+2*x)*exp(x). - G. C. Greubel, Dec 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 - log(2)/3. - Amiram Eldar, Jan 10 2022
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Nov 16 2008
Definition improved, offset corrected and edited by Omar E. Pol, Dec 11 2008
Comments