A094258 a(1) = 1, a(n+1) = n*n! for n >= 1.
1, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000, 24728016011107368960000, 594596384994354462720000
Offset: 1
Keywords
Examples
a(1) = 1; a(2) = 1*a(1) = 1; ... a(7) = 6*(a(1) + a(2) + ... + a(6)) = 6*(1 + 1 + 4 + 18 + 96 + 600) = 4320.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..400
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
Programs
-
Maple
A094258 := proc(n) option remember: if n = 1 then 1; else (n-1)*add(A094258(i),i=1..n-1) ; fi ; end: seq(A094258(n),n=1..24) ; # R. J. Mathar, Jul 27 2007
-
Mathematica
a=s=1;lst={a};Do[a=s*n-s;s+=a;AppendTo[lst,a],{n,2,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 27 2009 *) Module[{lst={1}},Do[AppendTo[lst,n*Total[lst]],{n,30}];lst] (* Harvey P. Dale, Jul 01 2012 *)
-
PARI
A094258(n)=(n-1)!*(n-(n>1)) \\ M. F. Hasler, Oct 21 2012
Formula
a(n+1) = n*n! = A001563(n) for n>=1.
From Jonathan Sondow, Aug 14 2006: (Start)
a(n) = n! - (n-1)! for n >= 2.
a(n) = n! - a(n-1) - a(n-2) - ... - a(1). with a(1) = 1. (End)
G.f.: 1/Q(0), where Q(k)= 1 + x/(1-x) - x/(1-x)*(k+2)/(1 - x/(1-x)*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
G.f.: W(0)*(1-sqrt(x)), where W(k) = 1 + sqrt(x)/( 1 - sqrt(x)*(k+2)/(sqrt(x)*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 18 2013
Extensions
Edited by Mark Hudson, Jan 05 2005
More terms from R. J. Mathar, Jul 27 2007
Edited by M. F. Hasler, Oct 21 2012
Edited by Jon E. Schoenfield, Jan 17 2015
Definition simplified by M. F. Hasler, Jun 28 2016
Comments