cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094305 Triangle read by rows: T(n,k) = ((n+1)(n+2)/2) * binomial(n,k) (0 <= k <= n).

Original entry on oeis.org

1, 3, 3, 6, 12, 6, 10, 30, 30, 10, 15, 60, 90, 60, 15, 21, 105, 210, 210, 105, 21, 28, 168, 420, 560, 420, 168, 28, 36, 252, 756, 1260, 1260, 756, 252, 36, 45, 360, 1260, 2520, 3150, 2520, 1260, 360, 45, 55, 495, 1980, 4620, 6930, 6930, 4620, 1980, 495, 55, 66
Offset: 0

Views

Author

Amarnath Murthy, Apr 29 2004

Keywords

Comments

Sum of all possible sums of k+1 numbers chosen from among the first n+1 numbers. Additive analog of triangle of Stirling numbers of first kind (A008275). - David Wasserman, Oct 04 2007
Third slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o)+a(m,n-1,o)+a(m,n,o-1) with a(1,0,0)=1 and a(m<>1=0,n>=0,0>=o)=0, for which the first slice is Pascal's triangle (slice read by antidiagonals). - Thomas Wieder, Aug 06 2006
Triangle T(n,k), 0<=k<=n, read by rows given by [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] DELTA [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007
T(n,k) is the number of ordered triples of bit strings with n bits and exactly k 1's over all bits in the triple. For example for n=1 we have (0,e,e),(e,0,e),(e,e,0),(1,e,e),(e,1,e),(e,e,1) where e is the empty string. - Geoffrey Critzer, Apr 06 2013
T(n,k) = A000217(n+1) * A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Jul 30 2013

Examples

			Triangle begins:
  1
  3 3
  6 12 6
  10 30 30 10
  15 60 90 60 15
  21 105 210 210 105 21
  ...
The n-th row is the product of the n-th triangular number and the n-th row of Pascal's triangle. The fifth row is (15,60,90,60,15) or 15*{1,4,6,4,1}.
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 152.

Crossrefs

For a closely related array that also includes a row and column of zeros see A129533.
Columns include A000217. Row sums are A001788. Cf. A094306.

Programs

  • Haskell
    a094305 n k = a094305_tabl !! n !! k
    a094305_row n = a094305_tabl !! n
    a094305_tabl = zipWith (map . (*)) (tail a000217_list) a007318_tabl
    -- Reinhard Zumkeller, Jul 30 2013
  • Maple
    A094305:= proc(n,k) (n+1)*(n+2)/2 * binomial(n,k); end;
  • Mathematica
    nn=10; f[list_]:=Select[list,#>0&];a=1/(1-x-y x); Map[f,CoefficientList[Series[a^3,{x,0,nn}],{x,y}]]//Grid
    (* Geoffrey Critzer, Apr 06 2013 *)
    Flatten[Table[((n+1)(n+2))/2 Binomial[n,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 31 2014 *)

Formula

T(n,k) = Sum_{i=1..k+1} (-1)^(i+1)*i^2*binomial(n+2,k+i+1)*binomial(n+2,k-i+1). - Mircea Merca, Apr 05 2012
O.g.f.: 1/(1 - x - y*x)^3. - Geoffrey Critzer, Apr 06 2013

Extensions

Edited by Ralf Stephan, Feb 04 2005
Further comments from David Wasserman, Oct 04 2007
Further editing by N. J. A. Sloane, Oct 07 2007