cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A038003 Odd Catalan numbers: a(n) = A000108(2^n-1).

Original entry on oeis.org

1, 1, 5, 429, 9694845, 14544636039226909, 94295850558771979787935384946380125, 11311095732253345760960290897769189975961199415637572612957718759342193629
Offset: 0

Views

Author

Keywords

Comments

The next term has 150 digits. - Harvey P. Dale, Feb 22 2016

Crossrefs

Intersection of A001790 and A098597. - Dimitri Papadopoulos, Oct 28 2016

Programs

  • Magma
    [Binomial(2^(n+1)-2, 2^n-1)/(2^n): n in [0..10]]; // Vincenzo Librandi, Nov 01 2016
  • Mathematica
    Select[CatalanNumber[Range[0,300]],OddQ] (* Harvey P. Dale, Feb 22 2016 *)
  • PARI
    a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n); \\ Joerg Arndt, Nov 05 2015
    
  • Python
    from _future_ import division
    A038003_list, c, s = [1, 1], 1, 3
    for n in range(2,10**5+1):
        c = (c*(4*n-2))//(n+1)
        if n == s:
            A038003_list.append(c)
            s = 2*s+1 # Chai Wah Wu, Feb 12 2015
    

Formula

a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n).
a(n-1) = C(2^n,2^(n-1))/(2^n - 1)/2. - Benoit Cloitre, Aug 17 2002
a(n) = A000108(2^n-1). - David Wasserman, May 07 2007

A119861 Number of distinct prime factors of the odd Catalan numbers A038003(n).

Original entry on oeis.org

0, 1, 3, 6, 11, 20, 36, 64, 117, 209, 381, 699, 1291, 2387, 4445, 8317, 15645, 29494, 55855, 106021, 201778, 384941, 735909, 1409683, 2705277, 5200202
Offset: 1

Views

Author

Alexander Adamchuk, Jul 31 2006, Oct 11 2007

Keywords

Comments

A038003[n] = A000108[2^n-1] = binomial(2^(n+1)-2, 2^n-1)/(2^n). a(1) = 0 because A038003[1] = 1. a(2) = 1 because A038003[2] = 5. a(3) = 3 because A038003[3] = 429 = 3*11*13. a(4) = 6 because A038003[4] = 9694845 = 3^2*5*17*19*23*29.
Odd Catalan numbers are listed in A038003[n] = A000108[2^n-1] = binomial(2^(n+1)-2, 2^n-1)/(2^n).

Crossrefs

Cf. A000108 = Catalan Number. Cf. A038003 = Odd Catalan numbers. Cf. A120274, A120275, A119908, A094389.

Programs

  • Maple
    with(numtheory): c:=proc(n) options operator, arrow: binomial(2*n, n)/(n+1) end proc: seq(nops(factorset(c(2^n-1))),n=1..15); # Emeric Deutsch, Oct 24 2007
  • Mathematica
    Table[Length[FactorInteger[Binomial[2^(n+1)-2, 2^n-1]/(2^n)]],{n,1,15}]
  • Python
    from sympy import factorint
    A119861_list, c, s = [0], {}, 3
    for n in range(2,2**19):
        for p,e in factorint(4*n-2).items():
            if p in c:
                c[p] += e
            else:
                c[p] = e
        for p,e in factorint(n+1).items():
            if c[p] == e:
                del c[p]
            else:
                c[p] -= e
        if n == s:
            A119861_list.append(len(c))
            s = 2*s+1 # Chai Wah Wu, Feb 12 2015

Formula

a(n) = Length[ FactorInteger[ Binomial[ 2^(n+1)-2, 2^n-1] / (2^n) ]].

Extensions

a(16)-a(18) from Robert G. Wilson v, May 15 2007
a(19)-a(26) from Chai Wah Wu, Feb 12 2015

A116943 Number of 4s digits plus non-final 3s digits 3 base 5 expansion of 2^n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 3, 2, 2, 2, 1, 1, 3, 4, 5, 3, 3, 1, 4, 4, 7, 2, 7, 7, 4, 6, 9, 9, 6, 5, 5, 7, 4, 9, 4, 7, 7, 7, 10, 8, 6, 8, 6, 9, 8, 9, 8, 10, 11, 11, 8, 13, 5, 11, 15, 13, 10, 10, 8, 12, 9, 14, 11, 8, 11, 12, 10, 13, 13, 13, 10, 10, 12, 6, 10, 15, 8, 17, 17, 16, 16, 12, 16, 15, 13
Offset: 0

Views

Author

Jonathan Vos Post, Mar 23 2006

Keywords

Comments

In his comment on A038003 Frank Adams-Watters conjectures "that 2^n contains such a base 5 digit for n>=9. This is almost certainly true." That is equivalent to a(n) > 0 for n>=9, which is also equivalent to A094389(n) = 5 where A094389 is last decimal digit of the odd Catalan number A038003(n).

Examples

			a(7) = 0 because 2^7 (modulo 5) = 1003, which contains 0 digits 4 plus 0 non-final digits 3 (it has a digit 3, but that digit is finial, meaning rightmost).
a(10) = 3 because 2^10 mod 5 = 13044, which contains 2 digits 4 plus 1 non-final digits 3, so 2 + 1 = 3.
a(60) = 10 because 2^60 mod 5 = 34132411211412413323100401, which contains 5 digits 4 plus 5 non-final digits 3, so 5 + 5 = 10.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{id = IntegerDigits[2^n, 5]}, Count[id, 4] + Count[Most@id, 3]]; Table[ f[n], {n, 0, 88}] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Apr 01 2006

A152753 Last digit of even Catalan number A152670(n).

Original entry on oeis.org

2, 4, 2, 2, 0, 2, 6, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 2, 4, 0, 8, 4, 8, 0, 4, 2, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 6, 2, 0, 4, 2, 2, 4, 0, 2, 6, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Even values of A152669.

Crossrefs

Showing 1-4 of 4 results.