cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094417 Generalized ordered Bell numbers Bo(4,n).

Original entry on oeis.org

1, 4, 36, 484, 8676, 194404, 5227236, 163978084, 5878837476, 237109864804, 10625889182436, 523809809059684, 28168941794178276, 1641079211868751204, 102961115527874385636, 6921180217049667005284, 496267460209336700111076, 37807710659221213027893604
Offset: 0

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Fourth row of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(5 - 4*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // Bruno Berselli, Mar 17 2014
    
  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, 4* add(binomial(n, k) *a(k), k=0..n-1))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    max = 16; f[x_] := 1/(5-4*E^x); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 14 2011, after g.f. *)
  • PARI
    my(N=25,x='x+O('x^N)); Vec(serlaplace(1/(5 - 4*exp(x)))) \\ Joerg Arndt, Jan 15 2024
  • SageMath
    def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
    def A094417(k): return A094416(4,k)
    [A094417(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
    

Formula

E.g.f.: 1/(5 - 4*exp(x)).
a(n) = 4 * A050353(n) for n>0.
a(n) = Sum_{k=0..n} A131689(n,k) * 4^k. - Philippe Deléham, Nov 03 2008
E.g.f.: A(x) with A_n = 4 * Sum_{k=0..n-1} C(n,k) * A_k; A_0 = 1. - Vladimir Kruchinin, Jan 27 2011
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 8*x*(k+1)/(8*x*(k+1) - 1 + 10*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) = log(5/4)*int {x = 0..inf} (floor(x))^n * (5/4)^(-x) dx. - Peter Bala, Feb 14 2015
a(0) = 1; a(n) = 4 * a(n-1) - 5 * Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
From Seiichi Manyama, Jun 01 2025: (Start)
a(n) = (-1)^(n+1)/5 * Li_{-n}(5/4), where Li_{n}(x) is the polylogarithm function.
a(n) = (1/5) * Sum_{k>=0} k^n * (4/5)^k.
a(n) = (4/5) * Sum_{k=0..n} 5^k * (-1)^(n-k) * A131689(n,k) for n > 0. (End)