cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095051 E.g.f.: exp(-x)/eta(x), where eta(x) is the Dedekind eta function.

Original entry on oeis.org

1, 0, 3, 8, 69, 384, 4375, 34152, 464457, 5051456, 75865131, 1032865800, 18108977293, 286975230528, 5639956035519, 105513165321704, 2269311347406225, 48066460265622912, 1146324511845384787, 26924271371612501256, 701472699537610875861, 18214089447110112972800, 512194770431254272442983
Offset: 0

Views

Author

Benoit Cloitre, Jun 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n, k] * k! * PartitionsP[k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 31 2017 *)
    nmax = 20; CoefficientList[Series[Exp[-x] * x^(1/24)/DedekindEta[Log[x]/(2*Pi*I)], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 31 2017 *)
  • PARI
    a(n)=polcoeff(1/eta(x)/exp(x),n)*n!

Formula

Inverse binomial transform of A053529. - Vladeta Jovovic, Jun 21 2004
From Vaclav Kotesovec, Oct 31 2017: (Start)
a(n) ~ exp(-1) * n! * A000041(n).
a(n) ~ sqrt(2*Pi) * exp(Pi*sqrt(2*n/3) - n - 1) * n^(n - 1/2) / (4*sqrt(3)). (End)
E.g.f.: exp(Sum_{k>=2} sigma(k)*x^k/k). - Ilya Gutkovskiy, Oct 15 2018

Extensions

More terms from Michel Marcus, Oct 31 2017