A281425
a(n) = [q^n] (1 - q)^n / Product_{j=1..n} (1 - q^j).
Original entry on oeis.org
1, 0, 1, -1, 2, -4, 9, -21, 49, -112, 249, -539, 1143, -2396, 5013, -10550, 22420, -48086, 103703, -223806, 481388, -1029507, 2187944, -4625058, 9742223, -20490753, 43111808, -90840465, 191773014, -405523635, 858378825, -1817304609, 3845492204, -8129023694, 17162802918, -36191083386
Offset: 0
-
b:= proc(n, k) option remember; `if`(k=0,
combinat[numbpart](n), b(n, k-1)-b(n-1, k-1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35); # Alois P. Heinz, Dec 21 2024
-
Table[SeriesCoefficient[(1 - q)^n / Product[(1 - q^j), {j, 1, n}], {q, 0, n}], {n, 0, 35}]
Table[SeriesCoefficient[(1 - q)^n QPochhammer[q^(1 + n), q]/QPochhammer[q, q], {q, 0, n}], {n, 0, 35}]
Table[SeriesCoefficient[1/QFactorial[n, q], {q, 0, n}], {n, 0, 35}]
Table[Differences[PartitionsP[Range[0, n]], n], {n, 0, 35}] // Flatten
Table[Sum[(-1)^j*Binomial[n, j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 06 2017 *)
A218481
Binomial transform of the partition numbers (A000041).
Original entry on oeis.org
1, 2, 5, 13, 34, 88, 225, 569, 1425, 3538, 8717, 21331, 51879, 125474, 301929, 723144, 1724532, 4096210, 9693455, 22859524, 53733252, 125919189, 294232580, 685661202, 1593719407, 3695348909, 8548564856, 19732115915, 45450793102, 104481137953, 239718272765
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 13*x^3 + 34*x^4 + 88*x^5 + 225*x^6 + 569*x^7 +...
The g.f. equals the product:
A(x) = 1/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1/(1-x) * (1 + x*(1-x)/((1-x)-x)^2 + x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2 + x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2 + x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...).
The terms begin:
a(0) = 1*1,
a(1) = 1*1 + 1*1 = 2;
a(2) = 1*1 + 2*1 + 1*2 = 5;
a(3) = 1*1 + 3*1 + 3*2 + 1*3 = 13;
a(4) = 1*1 + 4*1 + 6*2 + 4*3 + 1*5 = 34; ...
-
Table[Sum[Binomial[n,k]*PartitionsP[k],{k,0,n}],{n,0,30}] (* Vaclav Kotesovec, Jun 25 2015 *)
nmax = 30; CoefficientList[Series[Sum[PartitionsP[k] * x^k / (1-x)^(k+1), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2022 *)
-
{a(n)=sum(k=0,n,binomial(n,k)*numbpart(k))}
for(n=0,40,print1(a(n),", "))
-
{a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*prod(k=1,n,(1-x)^k/((1-x)^k-X^k)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*sum(m=0,n,x^m*(1-x)^(m*(m-1)/2)/prod(k=1,m,((1-x)^k - X^k))),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*sum(m=0,n,x^(m^2)*(1-X)^m/prod(k=1,m,((1-x)^k - x^k)^2)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*exp(sum(m=1,n+1,x^m/((1-x)^m-X^m)/m)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*exp(sum(m=1,n+1,sigma(m)*x^m/(1-X)^m/m)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*prod(k=1,n,(1 + x^k/(1-X)^k)^valuation(2*k,2)),n)}
A293467
a(n) = Sum_{k=0..n} (-1)^k * binomial(n, k) * q(k), where q(k) is A000009 (partitions into distinct parts).
Original entry on oeis.org
1, 0, 0, -1, -3, -7, -14, -25, -41, -64, -100, -165, -294, -550, -1023, -1795, -2823, -3658, -2882, 2873, 20435, 62185, 148863, 314008, 613957, 1155794, 2175823, 4244026, 8753538, 19006490, 42471787, 95234575, 210395407, 453413866, 949508390, 1931939460
Offset: 0
-
Table[Sum[(-1)^k * Binomial[n, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 50}]
A266232
Binomial transform of the number of partitions into distinct parts (A000009).
Original entry on oeis.org
1, 2, 4, 9, 21, 49, 114, 265, 615, 1422, 3272, 7493, 17090, 38850, 88065, 199097, 448953, 1009788, 2265642, 5071611, 11328395, 25254093, 56195143, 124829822, 276839061, 612991848, 1355268779, 2992016128, 6596222234, 14522634554, 31933047707, 70130243427
Offset: 0
-
Table[Sum[Binomial[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}]
nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k] * x^k / (1-x)^(k+1), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2022 *)
Original entry on oeis.org
1, 2, 7, 34, 221, 1666, 15187, 153602, 1770169, 22379266, 312164831, 4685997922, 76668261397, 1335425319554, 24921410400811, 493075754663746, 10358312736025457, 228862423291312642, 5335861084579488439, 130235118120543955106, 3333808742649699747661
Offset: 0
-
Table[Sum[Binomial[n, k]*k!*PartitionsP[k], {k, 0, n}], {n, 0, 20}]
nmax = 20; CoefficientList[Series[Exp[x] * x^(1/24)/DedekindEta[Log[x]/(2*Pi*I)], {x, 0, nmax}], x] * Range[0, nmax]!
-
x='x+O('x^50); Vec(serlaplace(exp(x)/eta(x))) \\ G. C. Greubel, Oct 15 2018
Original entry on oeis.org
1, 2, 5, 22, 113, 746, 6037, 55070, 548417, 6281938, 79935941, 1087584422, 16109401585, 255667890362, 4358283982613, 79893373511086, 1542859916102657, 31322024816838050, 676027617881188357, 15287136167625123638, 362322855217463741681
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x)*(&*[1 + x^k: k in [1..50]]))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 15 2018
-
Table[Sum[Binomial[n, k]*k!*PartitionsQ[k], {k, 0, n}], {n, 0, 20}]
-
x='x+O('x^30); Vec(serlaplace(exp(x)*eta(x^2)/eta(x))) \\ G. C. Greubel, Oct 15 2018
A294468
Inverse binomial transform of A088311.
Original entry on oeis.org
1, 0, 1, 8, 9, 224, 1225, 11304, 103537, 1431296, 15642801, 206721800, 3295533241, 47467875168, 859354139449, 15596241280424, 283240963555425, 5859309797252864, 129874369387025377, 2752905169704533256, 67640333903657850601
Offset: 0
-
Table[Sum[(-1)^(n-k)*Binomial[n, k]*k!*PartitionsQ[k], {k, 0, n}], {n, 0, 20}]
max = 20; t = Table[k!*PartitionsQ[k], {k, 0, max}]; Table[Differences[t, n], {n, 0, max}][[All, 1]] (* Jean-François Alcover, Nov 02 2017 *)
Showing 1-7 of 7 results.
Comments