cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A281425 a(n) = [q^n] (1 - q)^n / Product_{j=1..n} (1 - q^j).

Original entry on oeis.org

1, 0, 1, -1, 2, -4, 9, -21, 49, -112, 249, -539, 1143, -2396, 5013, -10550, 22420, -48086, 103703, -223806, 481388, -1029507, 2187944, -4625058, 9742223, -20490753, 43111808, -90840465, 191773014, -405523635, 858378825, -1817304609, 3845492204, -8129023694, 17162802918, -36191083386
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2017

Keywords

Comments

a(n) is n-th term of the Euler transform of -n + 1, 1, 1, 1, ...
Inverse zero-based binomial transform of A000041. The version for strict partitions is A380412, or A293467 up to sign. - Gus Wiseman, Feb 06 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0,
          combinat[numbpart](n), b(n, k-1)-b(n-1, k-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 21 2024
  • Mathematica
    Table[SeriesCoefficient[(1 - q)^n / Product[(1 - q^j), {j, 1, n}], {q, 0, n}], {n, 0, 35}]
    Table[SeriesCoefficient[(1 - q)^n QPochhammer[q^(1 + n), q]/QPochhammer[q, q], {q, 0, n}], {n, 0, 35}]
    Table[SeriesCoefficient[1/QFactorial[n, q], {q, 0, n}], {n, 0, 35}]
    Table[Differences[PartitionsP[Range[0, n]], n], {n, 0, 35}] // Flatten
    Table[Sum[(-1)^j*Binomial[n, j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 06 2017 *)

Formula

a(n) = [q^n] 1/((1 + q)*(1 + q + q^2)*...*(1 + q + ... + q^(n-1))).
a(n) = Sum_{j=0..n} (-1)^j * binomial(n, j) * A000041(n-j). - Vaclav Kotesovec, Oct 06 2017
a(n) ~ (-1)^n * 2^(n - 3/2) * exp(Pi*sqrt(n/12) + Pi^2/96) / (sqrt(3)*n). - Vaclav Kotesovec, May 07 2018

A218481 Binomial transform of the partition numbers (A000041).

Original entry on oeis.org

1, 2, 5, 13, 34, 88, 225, 569, 1425, 3538, 8717, 21331, 51879, 125474, 301929, 723144, 1724532, 4096210, 9693455, 22859524, 53733252, 125919189, 294232580, 685661202, 1593719407, 3695348909, 8548564856, 19732115915, 45450793102, 104481137953, 239718272765
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2012

Keywords

Comments

Partial sums of A218482.
From Vaclav Kotesovec, Nov 02 2023: (Start)
Let 0 < p < 1, r > 0, v > 0, f(n) = v*exp(r*n^p)/n^b, then
Sum_{k=0..n} binomial(n,k) * f(k) ~ f(n/2) * 2^n * exp(g(n)), where
g(n) = p^2 * r^2 * n^p / (2^(1+2*p)*n^(1-p) + p*r*(1-p)*2^(1+p)).
Special cases:
p < 1/2, g(n) = 0
p = 1/2, g(n) = r^2/16
p = 2/3, g(n) = r^2 * n^(1/3) / (9 * 2^(1/3)) - r^3/81
p = 3/4, g(n) = 9*r^2*sqrt(n)/(64*sqrt(2)) - 27*r^3*n^(1/4)/(2048*2^(1/4)) + 81*r^4/65536
p = 3/5, g(n) = 9*r^2*n^(1/5)/(100*2^(1/5))
p = 4/5, g(n) = 2^(7/5)*r^2*n^(3/5)/25 - 4*2^(3/5)*r^3*n^(2/5)/625 + 8*2^(4/5)*r^4*n^(1/5)/15625 - 32*r^5/390625
(End)

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 13*x^3 + 34*x^4 + 88*x^5 + 225*x^6 + 569*x^7 +...
The g.f. equals the product:
A(x) = 1/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1/(1-x) * (1  +  x*(1-x)/((1-x)-x)^2  +  x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2  +  x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2  +  x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...).
The terms begin:
a(0) = 1*1,
a(1) = 1*1 + 1*1 = 2;
a(2) = 1*1 + 2*1 + 1*2 = 5;
a(3) = 1*1 + 3*1 + 3*2 + 1*3 = 13;
a(4) = 1*1 + 4*1 + 6*2 + 4*3 + 1*5 = 34; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*PartitionsP[k],{k,0,n}],{n,0,30}] (* Vaclav Kotesovec, Jun 25 2015 *)
    nmax = 30; CoefficientList[Series[Sum[PartitionsP[k] * x^k / (1-x)^(k+1), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2022 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*numbpart(k))}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*prod(k=1,n,(1-x)^k/((1-x)^k-X^k)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*sum(m=0,n,x^m*(1-x)^(m*(m-1)/2)/prod(k=1,m,((1-x)^k - X^k))),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*sum(m=0,n,x^(m^2)*(1-X)^m/prod(k=1,m,((1-x)^k - x^k)^2)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*exp(sum(m=1,n+1,x^m/((1-x)^m-X^m)/m)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*exp(sum(m=1,n+1,sigma(m)*x^m/(1-X)^m/m)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*prod(k=1,n,(1 + x^k/(1-X)^k)^valuation(2*k,2)),n)}

Formula

G.f.: 1/(1-x)*Product_{n>=1} (1-x)^n / ((1-x)^n - x^n).
G.f.: 1/(1-x)*Sum_{n>=0} x^n * (1-x)^(n*(n-1)/2) / Product_{k=1..n} ((1-x)^k - x^k).
G.f.: 1/(1-x)*Sum_{n>=0} x^(n^2) * (1-x)^n / Product_{k=1..n} ((1-x)^k - x^k)^2.
G.f.: 1/(1-x)*exp( Sum_{n>=1} x^n/((1-x)^n - x^n) / n ).
G.f.: 1/(1-x)*exp( Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n ), where sigma(n) is the sum of divisors of n (A000203).
G.f.: 1/(1-x)*Product_{n>=1} (1 + x^n/(1-x)^n)^A001511(n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
Logarithmic derivative yields A222115.
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-1) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015

A293467 a(n) = Sum_{k=0..n} (-1)^k * binomial(n, k) * q(k), where q(k) is A000009 (partitions into distinct parts).

Original entry on oeis.org

1, 0, 0, -1, -3, -7, -14, -25, -41, -64, -100, -165, -294, -550, -1023, -1795, -2823, -3658, -2882, 2873, 20435, 62185, 148863, 314008, 613957, 1155794, 2175823, 4244026, 8753538, 19006490, 42471787, 95234575, 210395407, 453413866, 949508390, 1931939460
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 09 2017

Keywords

Comments

Multiply by (-1)^n to get A380412, which is the first term of the n-th differences of the strict partition numbers, or column n=0 of A378622. - Gus Wiseman, Feb 04 2025

Crossrefs

The non-strict version is the absolute value of A281425; see A175804, A320590.
Up to sign, same as A380412. See A320591, A377285, A378970, A378971.
A000009 counts strict integer partitions, differences A087897.

Programs

  • Mathematica
    Table[Sum[(-1)^k * Binomial[n, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 50}]

A266232 Binomial transform of the number of partitions into distinct parts (A000009).

Original entry on oeis.org

1, 2, 4, 9, 21, 49, 114, 265, 615, 1422, 3272, 7493, 17090, 38850, 88065, 199097, 448953, 1009788, 2265642, 5071611, 11328395, 25254093, 56195143, 124829822, 276839061, 612991848, 1355268779, 2992016128, 6596222234, 14522634554, 31933047707, 70130243427
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 25 2015

Keywords

Comments

Let 0 < p < 1, r > 0, v > 0, f(n) = v*exp(r*n^p)/n^b, then
Sum_{k=0..n} binomial(n,k) * f(k) ~ f(n/2) * 2^n * exp(g(n)), where
g(n) = p^2 * r^2 * n^p / (2^(1+2*p)*n^(1-p) + p*r*(1-p)*2^(1+p)).
Special cases:
p < 1/2, g(n) = 0
p = 1/2, g(n) = r^2/16
p = 2/3, g(n) = r^2 * n^(1/3) / (9 * 2^(1/3)) - r^3/81
p = 3/4, g(n) = 9*r^2*sqrt(n)/(64*sqrt(2)) - 27*r^3*n^(1/4)/(2048*2^(1/4)) + 81*r^4/65536
p = 3/5, g(n) = 9*r^2*n^(1/5)/(100*2^(1/5))
p = 4/5, g(n) = 2^(7/5)*r^2*n^(3/5)/25 - 4*2^(3/5)*r^3*n^(2/5)/625 + 8*2^(4/5)*r^4*n^(1/5)/15625 - 32*r^5/390625

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}]
    nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k] * x^k / (1-x)^(k+1), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2022 *)

Formula

a(n) ~ 2^(n-5/4) * exp(Pi*sqrt(n/6) + Pi^2/48) / (3^(1/4)*n^(3/4)).
G.f.: (1/(1 - x))*Product_{k>=1} (1 + x^k/(1 - x)^k). - Ilya Gutkovskiy, Aug 19 2018

A294466 Binomial transform of A053529.

Original entry on oeis.org

1, 2, 7, 34, 221, 1666, 15187, 153602, 1770169, 22379266, 312164831, 4685997922, 76668261397, 1335425319554, 24921410400811, 493075754663746, 10358312736025457, 228862423291312642, 5335861084579488439, 130235118120543955106, 3333808742649699747661
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 31 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*k!*PartitionsP[k], {k, 0, n}], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[Exp[x] * x^(1/24)/DedekindEta[Log[x]/(2*Pi*I)], {x, 0, nmax}], x] * Range[0, nmax]!
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(x)/eta(x))) \\ G. C. Greubel, Oct 15 2018

Formula

E.g.f.: exp(x)/eta(x), where eta(x) is the Dedekind eta function.
a(n) ~ exp(1) * n! * A000041(n).
a(n) ~ sqrt(2*Pi) * exp(Pi*sqrt(2*n/3) - n + 1) * n^(n - 1/2) / (4*sqrt(3)).
E.g.f.: exp(x + Sum_{k>=1} sigma(k)*x^k/k). - Ilya Gutkovskiy, Oct 15 2018

A294467 Binomial transform of A088311.

Original entry on oeis.org

1, 2, 5, 22, 113, 746, 6037, 55070, 548417, 6281938, 79935941, 1087584422, 16109401585, 255667890362, 4358283982613, 79893373511086, 1542859916102657, 31322024816838050, 676027617881188357, 15287136167625123638, 362322855217463741681
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 31 2017

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x)*(&*[1 + x^k: k in [1..50]]))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 15 2018
  • Mathematica
    Table[Sum[Binomial[n, k]*k!*PartitionsQ[k], {k, 0, n}], {n, 0, 20}]
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(x)*eta(x^2)/eta(x))) \\ G. C. Greubel, Oct 15 2018
    

Formula

a(n) ~ exp(1) * n! * A000009(n).
a(n) ~ sqrt(2*Pi) * exp(Pi*sqrt(n/3) - n + 1) * n^(n - 1/4) / (4*3^(1/4)).
E.g.f.: exp(x) * Product_{k>=1} (1 + x^k). - Ilya Gutkovskiy, Oct 15 2018

A294468 Inverse binomial transform of A088311.

Original entry on oeis.org

1, 0, 1, 8, 9, 224, 1225, 11304, 103537, 1431296, 15642801, 206721800, 3295533241, 47467875168, 859354139449, 15596241280424, 283240963555425, 5859309797252864, 129874369387025377, 2752905169704533256, 67640333903657850601
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 31 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n, k]*k!*PartitionsQ[k], {k, 0, n}], {n, 0, 20}]
    max = 20; t = Table[k!*PartitionsQ[k], {k, 0, max}]; Table[Differences[t, n], {n, 0, max}][[All, 1]] (* Jean-François Alcover, Nov 02 2017 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A088311(k).
a(n) ~ exp(-1) * n! * A000009(n).
a(n) ~ sqrt(2*Pi) * exp(Pi*sqrt(n/3) - n - 1) * n^(n - 1/4) / (4*3^(1/4)).
E.g.f.: exp(-x) * Product_{k>=1} (1 + x^k). - Ilya Gutkovskiy, Oct 15 2018
Showing 1-7 of 7 results.