A095119 Numbers k such that s(k) >= sigma(k), where s(k) = A095118(k) is the sum of the squares of the divisors of k which are <= sqrt(k) and sigma(k) = A000203(k) is the sum of the divisors of k.
1, 840, 900, 1080, 1225, 1260, 1440, 1600, 1680, 1800, 1848, 1890, 1980, 2016, 2100, 2160, 2340, 2400, 2520, 2640, 2700, 2772, 2800, 2880, 2970, 3024, 3080, 3120, 3136, 3150, 3240, 3276, 3300, 3360, 3465, 3528, 3600, 3640, 3696, 3780, 3900, 3960, 3969
Offset: 1
Keywords
Examples
840 is in the sequence because s(840) = 3070 >= 2880 = sigma(840).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
s[n_]:=Plus@@(Select[Divisors[n], #^2<=n&]^2); Select[Range[4000], s[ # ]>=DivisorSigma[1, # ]&]
-
PARI
isok(n) = sumdiv(n, d, if (d^2 <= n, d^2)) >= sigma(n); \\ Michel Marcus, Aug 13 2019
Comments