A095344
Length of n-th string generated by a Kolakoski(9,1) rule starting with a(1)=1.
Original entry on oeis.org
1, 1, 9, 9, 49, 81, 281, 601, 1729, 4129, 11049, 27561, 71761, 182001, 469049, 1197049, 3073249, 7861441, 20154441, 51600201, 132217969, 338618769, 867490649, 2221965721, 5691928321, 14579791201, 37347504489, 95666669289, 245056687249, 627723364401
Offset: 1
-
a:=[1,1,9];; for n in [4..35] do a[n]:=5*a[n-2]+4*a[n-3]; od; a; # G. C. Greubel, Dec 26 2019
-
a095344 n = a095344_list !! (n-1)
a095344_list = tail xs where
xs = 1 : 1 : 1 : zipWith (-) (map (* 5) $ zipWith (+) (tail xs) xs) xs
-- Reinhard Zumkeller, Aug 16 2013
-
R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( x*(1+x+ 4*x^2)/((1+x)*(1-x-4*x^2)) )); // G. C. Greubel, Dec 26 2019
-
seq(simplify(2*(-1)^n -(2/I)^n*(ChebyshevU(n, I/4) -2*I*ChebyshevU(n-1, I/4)) ), n = 1..35); # G. C. Greubel, Dec 26 2019
-
Table[2*(-1)^n - 2^n*(Fibonacci[n+1, 1/2] - 2*Fibonacci[n, 1/2]), {n,35}] (* G. C. Greubel, Dec 26 2019 *)
LinearRecurrence[{0,5,4},{1,1,9},40] (* Harvey P. Dale, Oct 12 2022 *)
-
Vec(x*(1+x+4*x^2)/((1+x)*(1-x-4*x^2)) + O(x^50)) \\ Colin Barker, Apr 20 2016
-
vector(35, n, round( 2*(-1)^n - (2/I)^n*(polchebyshev(n, 2, I/4) -2*I*polchebyshev(n-1, 2, I/4)) )) \\ G. C. Greubel, Dec 26 2019
-
def A095344_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1+x+4*x^2)/((1+x)*(1-x-4*x^2)) ).list()
a=A095344_list(35); a[1:] # G. C. Greubel, Dec 26 2019
A095343
Length of n-th string generated by a Kolakoski(7,1) rule starting with a(1)=1.
Original entry on oeis.org
1, 1, 7, 7, 31, 49, 145, 289, 727, 1591, 3775, 8545, 19873, 45505, 105127, 241639, 557023, 1281937, 2953009, 6798817, 15657847, 36054295, 83027839, 191190721, 440274241, 1013846401, 2334669127, 5376208327, 12380215711, 28508840689
Offset: 1
-
a:=[1,1];; for n in [3..35] do a[n]:=a[n-1]-3*a[n-2]-3*(-1)^n; od; a; # G. C. Greubel, Dec 26 2019
-
I:=[1,1]; [n le 2 select I[n] else Self(n-1) + 3*Self(n-2) - 3*(-1)^n: n in [1..35]]; // G. C. Greubel, Dec 26 2019
-
seq(coeff(series(x*(1+x+3*x^2)/((1+x)*(1-x-3*x^2)), x, n+1), x, n), n = 0..35); # G. C. Greubel, Dec 26 2019
-
Table[ 3*(-1)^n + 2*Sqrt[3]^n*(Sqrt[3]*Fibonacci[n, 1/Sqrt[3]] - Fibonacci[n+1, 1/Sqrt[3]]), {n,35}]//FullSimplify (* G. C. Greubel, Dec 26 2019 *)
-
vector(35, n, round(3*(-1)^n + 2*(sqrt(3)/I)^n*(sqrt(3)*I* polchebyshev(n-1, 2, I/(2*sqrt(3))) - polchebyshev(n, 2, I/(2*sqrt(3)))) )) \\ G. C. Greubel, Dec 26 2019
-
def A095343_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1+x+3*x^2)/((1+x)*(1-x-3*x^2)) ).list()
a=A095343_list(35); a[1:] # G. C. Greubel, Dec 26 2019
A025579
a(1)=1, a(2)=2, a(n) = 4*3^(n-3) for n >= 3.
Original entry on oeis.org
1, 2, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
Offset: 1
-
Concatenation([1,2], List([3..30], n-> 4*3^(n-3) )); # G. C. Greubel, Dec 26 2019
-
[1,2] cat [4*3^(n-3): n in [3..30]]; // G. C. Greubel, Dec 26 2019
-
seq( `if`(n<3, n, 4*3^(n-3)), n=1..30); # G. C. Greubel, Dec 26 2019
-
Join[{1,2},4*3^Range[0,30]] (* or *) Join[{1,2},NestList[3#&,4,30]] (* Harvey P. Dale, Jun 27 2011 *)
-
a(n)=max(n,4*3^(n-3)) \\ Charles R Greathouse IV, Jun 28 2011
-
Vec(x*(1+x)*(1-2*x)/(1-3*x) + O(x^30)) \\ Colin Barker, Oct 29 2019
-
[1,2]+[4*3^(n-3) for n in (3..30)] # G. C. Greubel, Dec 26 2019
A103196
a(n) = (1/9)(2^(n+3)-(-1)^n(3n-1)).
Original entry on oeis.org
1, 2, 3, 8, 13, 30, 55, 116, 225, 458, 907, 1824, 3637, 7286, 14559, 29132, 58249, 116514, 233011, 466040, 932061, 1864142, 3728263, 7456548, 14913073, 29826170, 59652315, 119304656, 238609285, 477218598, 954437167
Offset: 0
-
Table[(2^(n+3)-(-1)^n (3n-1))/9,{n,0,30}] (* or *) LinearRecurrence[ {0,3,2},{1,2,3},40] (* Harvey P. Dale, Jul 09 2018 *)
A124389
A square array of Kolakoski string lengths, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 7, 5, 7, 1, 1, 1, 1, 9, 17, 7, 9, 1, 1, 1, 1, 17, 25, 31, 9, 11, 1, 1, 1, 1, 25, 61, 49, 49, 11, 13, 1, 1, 1, 1, 43, 109, 145, 81, 71, 13, 15, 1, 1, 1
Offset: 0
Square array begins
1, 1, 1, 1, 1, 1, 1...
1, 1, 1, 3, 3, 7, 9...
1, 1, 1, 5, 5, 17, 25...
1, 1, 1, 7, 7, 31, 49...
1, 1, 1, 9, 9, 49, 81...
1, 1, 1, 11, 11, 71, 121...
1, 1, 1, 13, 13, 97, 169...
As a number triangle, triangle begins
1,
1, 1,
1, 1, 1,
1, 1, 1, 1,
1, 3, 1, 1, 1,
1, 3, 5, 1, 1, 1,
1, 7, 5, 7, 1, 1, 1,
1, 9, 17, 7, 9, 1, 1, 1,
1, 17, 25, 31, 9, 11, 1, 1, 1
Showing 1-5 of 5 results.
Comments