A141369
E.g.f. satisfies A(x) = exp(x*A(-x)).
Original entry on oeis.org
1, 1, -1, -8, 21, 336, -1445, -35328, 212009, 7010560, -54073449, -2258780160, 21303275389, 1076400869376, -12005345614093, -712084337721344, 9169911825026385, 624667885401341952, -9122376282532978769, -701910552416102645760, 11462725659070874233061
Offset: 0
E.g.f.: A(x) = 1 + x - x^2/2! - 8*x^3/3! + 21*x^4/4! + 336*x^5/5! --++ ...
Log(A(x)) = x - x^2 - x^3/2! + 8*x^4/3! + 21*x^4/4! - 336*x^5/5! -++- ...
-
Flatten[{1,Table[Sum[(-1)^(n-k) * Binomial[n,k] * (n-k+1)^(k-1) * k^(n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 26 2014 *)
-
{a(n)=local(A=1); for(i=0, n, A=exp((-1)^(n-i)*x*A+x*O(x^n))); n!*polcoeff(A, n)}
-
{a(n)=sum(k=0,n,(-1)^(n-k)*binomial(n,k)*(n-k+1)^(k-1)*k^(n-k))} \\ Paul D. Hanna, Jun 13 2009
A385526
E.g.f. A(x) satisfies A(x) = exp(x*A(3*x)).
Original entry on oeis.org
1, 1, 7, 208, 23365, 9588976, 14040296659, 71747056999360, 1255862559932597257, 74168744207577385109248, 14599375893944236344767578111, 9483024632344097320792984610415616, 20158786175666520486280070249843236771213, 139271933359690469686747131442731382830399594496
Offset: 0
-
nmax = 15; A[] = 1; Do[A[x] = E^(x*A[3*x]) + O[x]^j // Normal, {j, 1, nmax + 1}]; CoefficientList[A[x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 02 2025 *)
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + (j + 1) * q ** j * ncr(i - 1, j) * ary[j] * ary[i - 1 - j]}}
ary
end
def A385526(n)
A(3, n)
end
A385527
E.g.f. A(x) satisfies A(x) = exp(x*A(4*x)).
Original entry on oeis.org
1, 1, 9, 457, 118961, 152894961, 940318147705, 26967408304580857, 3534888068831469959649, 2084993641133372935803249505, 5465706581663919414225671125834601, 63043356313898446097762231466174924913065, 3173076775252515207774429654590479617164788572049
Offset: 0
-
nmax = 15; A[] = 1; Do[A[x] = E^(x*A[4*x]) + O[x]^j // Normal, {j, 1, nmax + 1}]; CoefficientList[A[x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 02 2025 *)
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + (j + 1) * q ** j * ncr(i - 1, j) * ary[j] * ary[i - 1 - j]}}
ary
end
def A385527(n)
A(4, n)
end
A385528
E.g.f. A(x) satisfies A(x) = exp(x*A(-2*x)).
Original entry on oeis.org
1, 1, -3, -47, 1385, 119601, -22345691, -10181013695, 10346973518097, 23934447308323873, -122307331801326167539, -1379021793666951568998159, 33874331587448813081748999673, 1804181313330860398948564389193681, -206892703326367302570264123699846971211
Offset: 0
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + (j + 1) * q ** j * ncr(i - 1, j) * ary[j] * ary[i - 1 - j]}}
ary
end
def A385528(n)
A(-2, n)
end
A385529
E.g.f. A(x) satisfies A(x) = exp(x*A(-3*x)).
Original entry on oeis.org
1, 1, -5, -152, 15949, 6548656, -9510189137, -48598095401792, 849885323784381337, 50192539805114962349824, -9878895951508580401879879229, -6416836884643090722807370469927936, 13640603845766595275775514993987722683941, 94239467260528503337471761892783659993298198528
Offset: 0
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + (j + 1) * q ** j * ncr(i - 1, j) * ary[j] * ary[i - 1 - j]}}
ary
end
def A385529(n)
A(-3, n)
end
A385530
E.g.f. A(x) satisfies A(x) = exp(x*A(-4*x)).
Original entry on oeis.org
1, 1, -7, -359, 90705, 116586321, -715618113143, -20523234900205911, 2689857437569063003169, 1586566688643256394542888225, -4159073515698730238218108546470759, -47972197129364591236078587520718376138951, 2414519164037893898620724924577882591112859773297
Offset: 0
-
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + (j + 1) * q ** j * ncr(i - 1, j) * ary[j] * ary[i - 1 - j]}}
ary
end
def A385530(n)
A(-4, n)
end
A168600
E.g.f. A(x) satisfies A(x) = exp( x*A(2*x)^2 ).
Original entry on oeis.org
1, 1, 9, 265, 19889, 3506801, 1417530745, 1302573091513, 2700478102745057, 12518436654808255585, 128568477648089286062441, 2900655737241126221237790185, 142677722979145454671155940121233, 15200178301599487957128451391538504145
Offset: 0
E.g.f: A(x) = 1 + x + 9*x^2/2! + 265*x^3/3! + 19889*x^4/4! +...
-
F:= A -> A(x) - exp(x*A(2*x)^2):
Extend:= proc(ff)
local f1x, m, f2, S, R, i;
f1x:= ff(x); m:= degree(f1x,x);
f2:= unapply(ff(x) + add(a[i]*x^i,i=m+1..2*m+1),x);
S:= series(F(f2),x,2*m+2);
R:= solve(identity(convert(S,polynom),x),{seq(a[i],i=m+1..2*m+1)});
unapply(subs(R, f2(x)),x);
end proc:
g:= 1:
for iter from 1 to 5 do g:= Extend(g) od:
seq(coeff(g(x),x,j)*j!,j=0..31); # Robert Israel, Feb 22 2019
-
nmax = 13; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - Exp[x A[2 x]^2] + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. HoldPattern[a[n_] -> k_] :> Set[a[n], k n!];
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(x*subst(A, x, 2*x)^2) ); n!*polcoeff(A, n)}
A168601
E.g.f. A(x) satisfies A(x) = exp( x*A(2*x)^3 ).
Original entry on oeis.org
1, 1, 13, 577, 65737, 17553361, 10704000277, 14796719274961, 46078793355045073, 320622833897384770657, 4940987529761176087132381, 167239138427197351352909547169, 12340269209872740741602975099855641
Offset: 0
E.g.f: A(x) = 1 + x + 13*x^2/2! + 577*x^3/3! + 65737*x^4/4! +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(x*subst(A, x, 2*x)^3) ); n!*polcoeff(A, n)}
A196734
E.g.f. satisfies: A(x) = exp(x*A(2*x)^(1/2)).
Original entry on oeis.org
1, 1, 3, 22, 377, 15236, 1458577, 326046946, 166826961233, 192154584592072, 491898410990385281, 2770349200953966300494, 34041983929934523771795481, 906333341309409985333411618492, 51972772881917637838407651811301201, 6386414140694907598544170345261596881026
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 377*x^4/4! + 15236*x^5/5! +...
where
A(2*x)^(1/2) = 1 + x + 5*x^2/2! + 73*x^3/3! + 2649*x^4/4! + 226881*x^5/5! + 45061213*x^6/6! +...+ A096538(n)*x^n/n! +...
-
{a(n)=local(A=1+x);for(i=1,21,A=exp(x*subst(A,x,2*x+x*O(x^n))^(1/2)));n!*polcoeff(A,n)}
A385620
E.g.f. A(x) satisfies A(x) = exp( x*(A(2*x) + A(3*x)) ).
Original entry on oeis.org
1, 2, 24, 1064, 158144, 78427712, 130391102464, 725657074158592, 13450842239318679552, 825492067428121929359360, 166724642619378284453845213184, 110175812687250637947409895640473600, 236918101449618886434191300434062010777600, 1649425480856495624442166311045759714226010423296
Offset: 0
-
terms = 14; A[] = 1; Do[A[x] =Exp[x*(A[2*x] + A[3*x])]+ O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Jul 05 2025 *)
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (j+1)*(2^j+3^j)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
Showing 1-10 of 10 results.