cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096777 a(n) = a(n-1) + Sum_{k=1..n-1}(a(k) mod 2), a(1) = 1.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 15, 20, 25, 31, 38, 45, 53, 62, 71, 81, 92, 103, 115, 128, 141, 155, 170, 185, 201, 218, 235, 253, 272, 291, 311, 332, 353, 375, 398, 421, 445, 470, 495, 521, 548, 575, 603, 632, 661, 691, 722, 753, 785, 818, 851, 885, 920, 955, 991, 1028
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 09 2004

Keywords

Comments

a(n) = a(n-1) + (number of odd terms so far in the sequence). Example: 15 is 11 + 4 odd terms so far in the sequence (they are 1,3,5,11). See A007980 for the same construction with even integers. - Eric Angelini, Aug 05 2007
A016789 and A032766 give positions where even and odd terms occur; a(3*n)=A056106(n); a(3*n-1)=A077588(n); a(3*n-2)=A056108(n). - Reinhard Zumkeller, Dec 29 2007

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 11*x^6 + 15*x^7 + 20*x^8 + ... - _Michael Somos_, Apr 18 2020
		

Crossrefs

Programs

Formula

a(n+1) - a(n) = A004396(n).
a(n) = floor(n/3) * (3*floor(n/3) + 2*(n mod 3) - 1) + n mod 3 + 0^(n mod 3). - Reinhard Zumkeller, Dec 29 2007
a(n) = floor((n-2)^2/3) + n. - Christopher Hunt Gribble, Mar 06 2014
G.f.: -x*(x^4+1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Mar 07 2014
Euler transform of finite sequence [2, 0, 1, 1, 0, 0, 0, -1]. - Michael Somos, Apr 18 2020
a(n) = (10 + 3*n*(n - 1) - A061347(n+1))/9. - Stefano Spezia, Sep 22 2022