A097699 Records in the numbers of antichains in the divisor lattice D(n) (A096827).
2, 3, 4, 6, 10, 15, 20, 21, 50, 105, 175, 196, 490, 887, 1176, 3490
Offset: 1
Crossrefs
Cf. A096827.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(4) = 7, the primitive subsequences (including the empty sequence) are: (), (1), (2), (3), (4), (2,3), (3,4). a(5) = 13 = 2*7-1, the primitive subsequences are: (), (5), (1), (2), (2,5), (3), (3,5), (4), (4,5), (2,3), (2,3,5), (3,4), (3,4,5). From _Gus Wiseman_, Jun 07 2019: (Start) The a(0) = 1 through a(5) = 13 primitive (pairwise indivisible) subsets: {} {} {} {} {} {} {1} {1} {1} {1} {1} {2} {2} {2} {2} {3} {3} {3} {2,3} {4} {4} {2,3} {5} {3,4} {2,3} {2,5} {3,4} {3,5} {4,5} {2,3,5} {3,4,5} a(n) is also the number of subsets of {1..n} containing all of their pairwise products <= n as well as any quotients of divisible elements. For example, the a(0) = 1 through a(5) = 13 subsets are: {} {} {} {} {} {} {1} {1} {1} {1} {1} {1,2} {1,2} {1,3} {1,3} {1,3} {1,4} {1,4} {1,2,3} {1,2,4} {1,5} {1,3,4} {1,2,4} {1,2,3,4} {1,3,4} {1,3,5} {1,4,5} {1,2,3,4} {1,2,4,5} {1,3,4,5} {1,2,3,4,5} Also the number of subsets of {1..n} containing all of their multiples <= n. For example, the a(0) = 1 through a(5) = 13 subsets are: {} {} {} {} {} {} {1} {2} {2} {3} {3} {1,2} {3} {4} {4} {2,3} {2,4} {5} {1,2,3} {3,4} {2,4} {2,3,4} {3,4} {1,2,3,4} {3,5} {4,5} {2,3,4} {2,4,5} {3,4,5} {2,3,4,5} {1,2,3,4,5} (End) From _Gus Wiseman_, Mar 12 2024: (Start) Also the number of subsets of {1..n} containing all divisors of the elements. For example, the a(0) = 1 through a(6) = 17 subsets are: {} {} {} {} {} {} {1} {1} {1} {1} {1} {1,2} {1,2} {1,2} {1,2} {1,3} {1,3} {1,3} {1,2,3} {1,2,3} {1,5} {1,2,4} {1,2,3} {1,2,3,4} {1,2,4} {1,2,5} {1,3,5} {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,2,3,4,5} (End)
with(numtheory): b:= proc(s) option remember; local n; n:= max(s[]); `if`(n<0, 1, b(s minus {n}) + b(s minus divisors(n))) end: bb:= n-> b({$2..n} minus divisors(n)): sb:= proc(n) option remember; `if`(n<2, 0, bb(n) + sb(n-1)) end: a:= n-> `if`(n=0, 1, `if`(isprime(n), 2*a(n-1)-1, 2+sb(n))): seq(a(n), n=0..40); # Alois P. Heinz, Mar 07 2011
b[s_] := b[s] = With[{n=Max[s]}, If[n < 0, 1, b[Complement[s, {n}]] + b[Complement[s, Divisors[n]]]]]; bb[n_] := b[Complement[Range[2, n], Divisors[n]]]; sb[n_] := sb[n] = If[n < 2, 0, bb[n] + sb[n-1]]; a[n_] := If[n == 0, 1, If[PrimeQ[n], 2a[n-1] - 1, 2 + sb[n]]]; Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Jul 27 2011, converted from Maple *) Table[Length[Select[Subsets[Range[n]], SubsetQ[#,Select[Union@@Table[#*i,{i,n}],#<=n&]]&]],{n,10}] (* Gus Wiseman, Jun 07 2019 *) Table[Length[Select[Subsets[Range[n]], #==Union@@Divisors/@#&]],{n,0,10}] (* Gus Wiseman, Mar 12 2024 *)
Non-isomorphic representatives of the a(1) = 1 through a(3) = 8 antichains: 1: {{1}} 2: {{1,1}} {{1,2}} {{1},{1}} {{1},{2}} 3: {{1,1,1}} {{1,2,2}} {{1,2,3}} {{1},{2,2}} {{1},{2,3}} {{1},{1},{1}} {{1},{2},{2}} {{1},{2},{3}}
Non-isomorphic representatives of the a(1) = 1 through a(4) = 10 connected antichains: 1: {{1}} 2: {{1,1}} {{1,2}} {{1},{1}} 3: {{1,1,1}} {{1,2,2}} {{1,2,3}} {{1},{1},{1}} 4: {{1,1,1,1}} {{1,1,2,2}} {{1,2,2,2}} {{1,2,3,3}} {{1,2,3,4}} {{1,1},{1,1}} {{1,2},{1,2}} {{1,2},{2,2}} {{1,3},{2,3}} {{1},{1},{1},{1}}
There are two maximal size antichains of divisors of 180, namely {12, 18, 20, 30, 45} and {4, 6, 9, 10, 15}. Both have length 5 so a(180) = 5. - _Gus Wiseman_, Aug 24 2018
a:=proc(n) local klist,x; klist:=ifactors(n)[2,1..-1,2]; coeff(normal(mul((1-x^(k+1))/(1-x),k=klist)),x,floor(add(k,k=klist)/2)) end: seq(a(n), n=1..100);
a[n_] := Module[{pp, kk, x}, {pp, kk} = Transpose[FactorInteger[n]]; Coefficient[ Product[ Total[x^Range[0, k]], {k, kk}], x, Quotient[ Total[ kk], 2] ] ]; Array[a, 100] (* Jean-François Alcover, Nov 20 2017 *) Table[Length[Select[Divisors[n],PrimeOmega[#]==Round[PrimeOmega[n]/2]&]],{n,50}] (* Gus Wiseman, Aug 24 2018 *)
a(n)=if(n<6||isprimepower(n), return(1)); my(d=divisors(n),r=1,u); d=d[2..#d-1];for(k=0,2^#d-1,if(hammingweight(k)<=r,next); u=vecextract(d,k); for(i=1,#u, for(j=i+1,#u, if(u[j]%u[i]==0, next(3))));r=#u);r \\ Charles R Greathouse IV, May 14 2013
from sympy import factorint from sympy.utilities.iterables import multiset_combinations def A096825(n): fs = factorint(n) return len(list(multiset_combinations(fs,sum(fs.values())//2))) # Chai Wah Wu, Aug 23 2021
def A096825(n) : if n==1 : return 1 R.= QQ[]; mults = [x[1] for x in factor(n)] return prod((t^(m+1)-1)//(t-1) for m in mults)[sum(mults)//2] # Eric M. Schmidt, May 11 2013
The a(0) = 1 through a(9) = 7 sets: {} {1} {1} {1} {1} {1} {1} {1} {1} {1} {2} {23} {23} {235} {235} {2357} {2357} {2357} {34} {345} {345} {3457} {3457} {2579} {456} {4567} {3578} {3457} {4567} {3578} {5678} {45679} {56789}
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}]; fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[Select[Subsets[Range[n]],stableQ[#,Divisible]&]]],{n,0,10}]
divset(n)={sumdiv(n, d, if(dif(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1< Andrew Howroyd, Aug 30 2019
Non-isomorphic representatives of the a(1) = 1 through a(5) = 19 antichains: {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}} {{1},{1}} {{1},{2,3}} {{1,2},{1,2}} {{1},{2,3,4,5}} {{1},{2}} {{1},{1},{1}} {{1},{2,3,4}} {{1,2},{3,4,5}} {{1},{2},{2}} {{1,2},{3,4}} {{1,4},{2,3,4}} {{1},{2},{3}} {{1,3},{2,3}} {{1},{1},{2,3,4}} {{1},{1},{2,3}} {{1},{2,3},{2,3}} {{1},{2},{3,4}} {{1},{2},{3,4,5}} {{1},{1},{1},{1}} {{1},{2,3},{4,5}} {{1},{1},{2},{2}} {{1},{2,4},{3,4}} {{1},{2},{2},{2}} {{1},{1},{1},{2,3}} {{1},{2},{3},{3}} {{1},{2},{2},{3,4}} {{1},{2},{3},{4}} {{1},{2},{3},{4,5}} {{1},{1},{1},{1},{1}} {{1},{1},{2},{2},{2}} {{1},{2},{2},{2},{2}} {{1},{2},{2},{3},{3}} {{1},{2},{3},{3},{3}} {{1},{2},{3},{4},{4}} {{1},{2},{3},{4},{5}}
a(3) = 4 because x = { 5, 8, 10, 12 } are the 4 numbers from which the iteration x -> phi(x) + 1 terminates at prime(3) = 5. a(4) = 8 because x = { 7, 9, 14, 15, 16, 18, 20, 24, 30 } are the 9 numbers from which the iteration x -> phi(x) + 1 terminates at prime(4) = 7.
iterat(x) = {my(k,s); if ( isprime(x),return(x)); s=x; for (k=1,1000000000,s=eulerphi(s)+1;if(isprime(s),return(s))); return(s); } check(y,endrange) = {my(count,start); count=0; for(start=1,endrange,if(iterat(start)==y,count++;)); return(count); } for (n=1,93,x=prime(n);print1(check(x,1000000),", ")) \\ Hugo Pfoertner, Sep 23 2017
The a(3) = 18 sets of set partitions: 0 {{1,2,3}} {{1,3},{2}} {{1,2},{3}} {{1},{2,3}} {{1},{2},{3}} {{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1,3},{2}} {{1},{2,3}} {{1,2},{3}} {{1},{2},{3}} {{1,2,3}} {{1},{2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1,2},{3}} {{1},{2},{3}} {{1},{2,3}} {{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1,2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2,3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2,3}} {{1,2},{3}} {{1},{2},{3}} {{1},{2,3}} {{1,2},{3}} {{1,3},{2}}
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c]; Table[Length[stableSets[sps[Range[n]],Max@@Length/@spmeet[#1,#2]>1&]],{n,5}]
Comments