cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A096842 Sigma applied to A096841 produces these repdigits: a[n]=A000203[A096841(n)].

Original entry on oeis.org

1, 3, 4, 7, 6, 8, 44, 222, 444, 888, 444, 888, 888, 2222, 6666, 8888, 8888, 222222, 88888, 222222, 444444, 444444, 888888, 444444, 444444, 666666, 888888, 888888, 888888, 888888, 888888, 444444, 444444, 888888, 888888, 888888, 888888, 888888
Offset: 1

Views

Author

Labos Elemer, Jul 15 2004

Keywords

Examples

			n=43:sigma[43]=44;
		

Crossrefs

Programs

  • Mathematica
    rd[x_] := Length[Union[IntegerDigits[x]]] Do[s = rd[DivisorSigma[1, n]]; s1 = DivisorSigma[1, n]; If[Equal[s, 1], Print[{n, s1}]; ta[[u]] = n; u = u + 1], {n, 1, 1000000}];ta;DivisorSigma[1, ta]

A116017 Numbers m such that m + sigma(m) is a repdigit.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 34, 141, 198, 277, 297, 375, 499, 1420, 2651, 2777, 3554, 4999, 19050, 28660, 29128, 49999, 131061, 506311, 3844863, 3852517, 4761903, 4999999, 22222218, 37560831, 133878933, 506767303, 872011214, 1381799253, 1427435733, 2777777777, 3018915632, 3555555554
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Comments

From Farideh Firoozbakht, Aug 17 2006: (Start)
(1) If p=(10^(3n+2)-19)/27 is a prime greater than 3 then m=6p is in the sequence because m+sigma(m)=6*(10^(3n+2)-1)/9 (the proof is easy), so m+sigma(m) is a repdigit number. The smallest such terms is 22222218, the next such term is 6*(10^(3*430+2)-1)/9=222...218 which has 1292 digits.
(2) If p=5*10^n-1 is prime then p is in the sequence because p+sigma(p)=10^(n+1)-1, so p+sigma(p) is a repdigit number. 499, 49999, 4999999,... are such terms.
(3) If p=(25*10^(n-1)-7)/9 is prime then p is in the sequence because p+sigma(p)=5*(10^n-1)/9, so p+sigma(p) is a repdigit number. 2, 277, 2777, 2777777777, ... are such terms.
(4) If p=(16*10^(n-1)-7)/9 is prime then m=2p is in the sequence because m+sigma(m)=8*(10^n-1) /9, so m+sigma(m) is a repdigit number. 34, 3554, 3555555554, ... are such terms. (End)

Examples

			22222218 + sigma(22222218) = 66666666.
		

Crossrefs

Contains A244444 as subsequence.

Programs

  • Mathematica
    Do[If[Length[Union[IntegerDigits[n + DivisorSigma[1, n]]]]==1, Print[n]], {n, 60000000}] (* Farideh Firoozbakht, Aug 17 2006 *)
  • PARI
    for(n=1, 10^7, d=digits(sigma(n)+n); c=0; for(i=1, #d-1, if(d[i]!=d[i+1], c++; break)); if(c==0, print1(n, ", "))) \\ Derek Orr, Aug 01 2014
    
  • Python
    from sympy import divisors
    A116017 = [n for n in range(1,10**5) if len(set(str(n+sum(divisors(n))))) == 1] # Chai Wah Wu, Aug 11 2014

Extensions

More terms from Farideh Firoozbakht, Aug 17 2006, Dec 19 2007
a(36)-a(37) from Donovan Johnson, Feb 17 2013
a(38) from Farideh Firoozbakht, Aug 01 2014

A084832 Numbers k such that 2*R_k - 1 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

4, 18, 100, 121, 244, 546, 631, 1494, 2566, 8088, 262603, 282948, 359860
Offset: 1

Views

Author

Jason Earls, Jun 05 2003

Keywords

Comments

Also numbers k such that (2*10^k-11)/9 is prime.
Larger values correspond to strong pseudoprimes.
a(11) > 10^5. - Robert Price, Sep 06 2014

Examples

			a(1) = 4 because 2*(10^4-1)/9-1 = 2221 is prime.
a(2) = 18 means that 222222222222222221 is prime.
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(2*(10^t-1)/9-1),[$1..1000]); # Robert Israel, Sep 07 2014
  • Mathematica
    Do[ If[ PrimeQ[2(10^n - 1)/9 - 1], Print[n]], {n, 0, 7000}] (* Robert G. Wilson v, Oct 14 2004; fixed by Derek Orr, Sep 06 2014 *)
  • PARI
    for(n=1, 10^4, if(ispseudoprime(2*(10^n-1)/9-1), print1(n,", "))) \\ Derek Orr, Sep 06 2014
    
  • Python
    from sympy import isprime
    def afind(limit):
      n, twoRn = 1, 2
      for n in range(1, limit+1):
        if isprime(twoRn-1): print(n, end=", ")
        twoRn = 10*twoRn + 2
    afind(700) # Michael S. Branicky, Apr 18 2021

Formula

a(n) = A056660(n) + 1.

Extensions

a(8) from Labos Elemer, Jul 15 2004
a(10) from Kamada data by Robert Price, Sep 06 2014
a(11)-a(13) from Kamada data by Tyler Busby, Apr 29 2024

A096845 Numbers n for which 4*R_n - 1 is a prime, where R_n = 11...1 is the repunit (A002275) of length n.

Original entry on oeis.org

1, 2, 3, 6, 9, 12, 30, 32, 183, 297, 492, 41316
Offset: 1

Views

Author

Labos Elemer, Jul 15 2004

Keywords

Comments

Also numbers n such that (4*10^n-13)/9 is prime.
a(13) > 10^5. - Robert Price, Oct 25 2014

Examples

			n=30 means that 444444444444444444444444444443 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 4(10^n - 1)/9 - 1], Print[n]], {n, 5000}] (* Robert G. Wilson v, Oct 14 2004 *)
    Select[Range[500],PrimeQ[FromDigits[PadLeft[{3},#,4]]]&] (* The program generates the first 11 terms of the sequence. *) (* Harvey P. Dale, Feb 10 2022 *)

Formula

a(n) = A056661(n) + 1.

Extensions

a(12) from Robert Price, Oct 25 2014

A096843 Primes of form repdigit - 1. Primes whose sum of divisors is a decimal repdigit.

Original entry on oeis.org

2, 3, 5, 7, 43, 443, 887, 2221, 8887, 444443, 888887, 444444443, 888888887, 444444444443, 888888888887, 222222222222222221, 444444444444444444444444444443, 44444444444444444444444444444443
Offset: 1

Views

Author

Labos Elemer, Jul 15 2004

Keywords

Comments

Union numbers 2, 5 and sequences A093171, A093163 and A091189.
Corresponding values of sigma(a(n)) are in A028987. - Jaroslav Krizek, Mar 19 2013

Examples

			n=43: sigma(43)=44;
		

Crossrefs

Extensions

Missing a(1)=2 and a(3)=5 added by Jaroslav Krizek, Mar 19 2013
Showing 1-5 of 5 results.