cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A266147 Number of n-digit primes in which n-1 of the digits are 8's.

Original entry on oeis.org

4, 2, 3, 1, 1, 1, 0, 1, 2, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

The leading digits must be 8's and only the trailing digit can vary.
For n large a(n) is usually zero.

Examples

			a(3) = 3 since 881, 883, and 887 are all primes.
		

Crossrefs

Programs

  • Mathematica
    d = 8; Array[Length@ Select[d (10^# - 1)/9 + (Range[0, 9] - d), PrimeQ] &, 100]
    Join[{4},Table[Count[Table[10FromDigits[PadRight[{},k,8]]+n,{n,{1,3,7,9}}], ?PrimeQ],{k,110}]] (* _Harvey P. Dale, Jun 22 2021 *)
  • Python
    from _future_ import division
    from sympy import isprime
    def A266147(n):
        return 4 if n==1 else sum(1 for d in [-7,-5,-1,1] if isprime(8*(10**n-1)//9+d)) # Chai Wah Wu, Dec 27 2015

A096841 Numbers n such that sum of divisors of these numbers gives a decimal repdigit.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 43, 146, 365, 438, 443, 803, 887, 2221, 4442, 6663, 8887, 87876, 88183, 153837, 250244, 285597, 292860, 296294, 302877, 307674, 344268, 351612, 380718, 403398, 423260, 441821, 444443, 550238, 579038, 584438, 588974, 593163, 600363
Offset: 1

Views

Author

Labos Elemer, Jul 15 2004

Keywords

Examples

			n=43:sigma[43]=44; regular solutions:repdigit-1=prime.
		

Crossrefs

Programs

  • Mathematica
    rd[x_] := Length[Union[IntegerDigits[x]]] Do[s = rd[DivisorSigma[1, n]]; s1 = DivisorSigma[1, n]; If[Equal[s, 1], Print[{n, s1}]; ta[[u]] = n; u = u + 1], {n, 1, 1000000}];ta;DivisorSigma[1, ta]
    Select[Range[650000],Length[Union[IntegerDigits[DivisorSigma[1,#]]]]==1&] (* Harvey P. Dale, May 11 2019 *)

A084832 Numbers k such that 2*R_k - 1 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

4, 18, 100, 121, 244, 546, 631, 1494, 2566, 8088, 262603, 282948, 359860
Offset: 1

Views

Author

Jason Earls, Jun 05 2003

Keywords

Comments

Also numbers k such that (2*10^k-11)/9 is prime.
Larger values correspond to strong pseudoprimes.
a(11) > 10^5. - Robert Price, Sep 06 2014

Examples

			a(1) = 4 because 2*(10^4-1)/9-1 = 2221 is prime.
a(2) = 18 means that 222222222222222221 is prime.
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(2*(10^t-1)/9-1),[$1..1000]); # Robert Israel, Sep 07 2014
  • Mathematica
    Do[ If[ PrimeQ[2(10^n - 1)/9 - 1], Print[n]], {n, 0, 7000}] (* Robert G. Wilson v, Oct 14 2004; fixed by Derek Orr, Sep 06 2014 *)
  • PARI
    for(n=1, 10^4, if(ispseudoprime(2*(10^n-1)/9-1), print1(n,", "))) \\ Derek Orr, Sep 06 2014
    
  • Python
    from sympy import isprime
    def afind(limit):
      n, twoRn = 1, 2
      for n in range(1, limit+1):
        if isprime(twoRn-1): print(n, end=", ")
        twoRn = 10*twoRn + 2
    afind(700) # Michael S. Branicky, Apr 18 2021

Formula

a(n) = A056660(n) + 1.

Extensions

a(8) from Labos Elemer, Jul 15 2004
a(10) from Kamada data by Robert Price, Sep 06 2014
a(11)-a(13) from Kamada data by Tyler Busby, Apr 29 2024

A093171 Primes of the form 80*R_k + 7, where R_k is the repunit (A002275) of length k.

Original entry on oeis.org

7, 887, 8887, 888887, 888888887, 888888888887, 888888888888888888888888888888888888888888888888888888888888888888888887
Offset: 1

Views

Author

Rick L. Shepherd, Mar 26 2004

Keywords

Comments

Primes of the form (8*10^k - 17)/9. - Vincenzo Librandi, Nov 16 2010

Crossrefs

Cf. A056695 (corresponding k), A096846.

A096845 Numbers n for which 4*R_n - 1 is a prime, where R_n = 11...1 is the repunit (A002275) of length n.

Original entry on oeis.org

1, 2, 3, 6, 9, 12, 30, 32, 183, 297, 492, 41316
Offset: 1

Views

Author

Labos Elemer, Jul 15 2004

Keywords

Comments

Also numbers n such that (4*10^n-13)/9 is prime.
a(13) > 10^5. - Robert Price, Oct 25 2014

Examples

			n=30 means that 444444444444444444444444444443 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 4(10^n - 1)/9 - 1], Print[n]], {n, 5000}] (* Robert G. Wilson v, Oct 14 2004 *)
    Select[Range[500],PrimeQ[FromDigits[PadLeft[{3},#,4]]]&] (* The program generates the first 11 terms of the sequence. *) (* Harvey P. Dale, Feb 10 2022 *)

Formula

a(n) = A056661(n) + 1.

Extensions

a(12) from Robert Price, Oct 25 2014

A056695 Numbers k such that 80*R_k + 7 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

0, 2, 3, 5, 8, 11, 71, 117, 123, 189, 243, 303, 356, 1421, 2690, 5537, 7580, 21905, 32175, 44357
Offset: 1

Views

Author

Robert G. Wilson v, Aug 10 2000

Keywords

Comments

Also numbers k such that (8*10^(k+1)-17)/9 is prime.
a(21) > 10^5. - Robert Price, May 20 2014

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[80*(10^n - 1)/9 + 7], Print[n]], {n, 0, 5000}]

Formula

a(n) = A096846(n) - 1.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(18)-a(20) derived from A096846 by Robert Price, May 20 2014

A096843 Primes of form repdigit - 1. Primes whose sum of divisors is a decimal repdigit.

Original entry on oeis.org

2, 3, 5, 7, 43, 443, 887, 2221, 8887, 444443, 888887, 444444443, 888888887, 444444444443, 888888888887, 222222222222222221, 444444444444444444444444444443, 44444444444444444444444444444443
Offset: 1

Views

Author

Labos Elemer, Jul 15 2004

Keywords

Comments

Union numbers 2, 5 and sequences A093171, A093163 and A091189.
Corresponding values of sigma(a(n)) are in A028987. - Jaroslav Krizek, Mar 19 2013

Examples

			n=43: sigma(43)=44;
		

Crossrefs

Extensions

Missing a(1)=2 and a(3)=5 added by Jaroslav Krizek, Mar 19 2013

A096842 Sigma applied to A096841 produces these repdigits: a[n]=A000203[A096841(n)].

Original entry on oeis.org

1, 3, 4, 7, 6, 8, 44, 222, 444, 888, 444, 888, 888, 2222, 6666, 8888, 8888, 222222, 88888, 222222, 444444, 444444, 888888, 444444, 444444, 666666, 888888, 888888, 888888, 888888, 888888, 444444, 444444, 888888, 888888, 888888, 888888, 888888
Offset: 1

Views

Author

Labos Elemer, Jul 15 2004

Keywords

Examples

			n=43:sigma[43]=44;
		

Crossrefs

Programs

  • Mathematica
    rd[x_] := Length[Union[IntegerDigits[x]]] Do[s = rd[DivisorSigma[1, n]]; s1 = DivisorSigma[1, n]; If[Equal[s, 1], Print[{n, s1}]; ta[[u]] = n; u = u + 1], {n, 1, 1000000}];ta;DivisorSigma[1, ta]
Showing 1-8 of 8 results.