cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A097213 Members of A097212, excluding highly composite numbers (A002182).

Original entry on oeis.org

30, 420, 4620, 9240, 12600, 13860, 18480, 138600, 360360, 1801800, 5405400, 6126120, 12252240, 18378360, 24504480, 30630600, 49008960, 91891800, 232792560, 349188840, 465585120, 931170240, 1163962800, 1745944200
Offset: 1

Views

Author

Matthew Vandermast, Aug 07 2004

Keywords

Comments

A097212 is the RECORDS transform of A076078, the number of sets of distinct positive integers with a least common multiple of n. A002182 is the RECORDS transform of A000005, the number of divisors of n.
A subsequence of A025487 (first integer of each prime signature) and also of A067128 (largely composite numbers).

Extensions

More terms from Robert G. Wilson v and Matthew Vandermast, Aug 23 2004
More terms from David Wasserman, Dec 27 2007

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A140999 Members of A067128 that are the smallest numbers with their prime signatures.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 24, 30, 36, 48, 60, 72, 96, 120, 180, 240, 360, 420, 480, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 4320, 4620, 5040, 7560, 9240, 10080, 12600, 13860, 15120, 18480, 20160, 25200, 27720, 30240, 36960, 37800, 40320, 45360
Offset: 1

Views

Author

J. Lowell, Jul 28 2008

Keywords

Comments

Includes all members of A002182.
Conjecture (false!): includes all members of A094348.
Contribution from Matthew Vandermast, Oct 10 2008: (Start)
Counterexample to conjecture: 5354228880, the smallest positive multiple of the first 23 positive integers, does not belong to A067128. It is the smallest member of A003418 (a subsequence of A094348) not to be largely composite.
Intersection of A067128 and A025487.
Includes all members of A097212. (End)

Examples

			3 doesn't qualify because it's not the smallest number with its prime signature. 16 does not qualify because it's not a member of A067128.
		

Programs

  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1};dm=1; Do[d=DivisorSigma[0,n]; If[d>=dm, dm=d; pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]]], {n, 2, 50000}]; ln (* Amiram Eldar, Jun 20 2019 after Robert G. Wilson v at A025487 *)

Extensions

More terms from Matthew Vandermast, Oct 10 2008, Oct 14 2008

A195307 Where records occur in A129308 and also in A195155.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 360, 420, 840, 1260, 2520, 5040, 13860, 27720, 55440, 83160, 166320, 277200, 360360, 720720, 1081080, 2162160, 2827440, 4324320, 6126120, 12252240, 24504480, 36756720, 73513440, 147026880, 183783600, 232792560, 367567200, 465585120, 698377680
Offset: 1

Views

Author

Omar E. Pol, Oct 16 2011

Keywords

Comments

Observation: a(n) ending at 0, if 5 <= n <= 24 and possibly more.
From David A. Corneth, Apr 14 2021: (Start)
Conjecture: for each term k > 1 in the sequence there exists prime p such that k/p is in the sequence.
From the first 35 terms only a(23) = 2827440 is not in A025487.
In the list of conjectured terms, if actual terms <= 10^16 are 97-smooth and have the following property: a(n+1) = a(n) + k*gcd(a(n), a(n-1), ..., a(n-20)) setting a(n) = 1 for n < 1 then those terms are actual terms.
The conjectured terms are 41-smooth and satisfy a(n+1) = a(n) + k*gcd(a(n), a(n-1), ..., a(n-13)). (End)
From Bernard Schott, Jul 30 2022: (Start)
Equivalently, integers whose number of oblong divisors (A129308) sets a new record.
Corresponding records of number of oblong divisors are 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ... (End)

Examples

			a(4) = 12 is in the sequence because A129308(12) = 3 is larger than any earlier value in A129308. - _Bernard Schott_, Jul 30 2022
		

Crossrefs

Extensions

More terms a(6)-a(24) from Alois P. Heinz, Oct 16 2011
a(25)-a(35) from David A. Corneth, Apr 14 2021

A305657 Record values of A305566.

Original entry on oeis.org

0, 2, 10, 44, 84, 122, 184, 1590, 26508, 119304, 428568, 7911144, 8275066, 510582192, 2122131332, 34308911168, 543326090824, 140627994008752, 140730946295934, 576036971191781024, 9222527848311467840, 9222949803150423996, 2359453722081533041216, 2361155375874259181576, 2361182396716073890056, 604433511573276736205056, 604435239966141944446584, 9664324052998090353961088, 618962932654137056803769392, 39614074145912329143754325568, 633821673403520815917635373056, 162257419909717745759000144646368, 664613879048405558070320228193928512, 170141183222784760671064904320665465984, 11150370605423278283522757581632660569339264
Offset: 1

Views

Author

Robert Israel, Jun 07 2018

Keywords

Comments

Numbers k such that for some j, k = A305566(j) and k > A305566(i) for i < j.
The corresponding record locations appear to be the members of A097212 except 2 and 4.

Crossrefs

Programs

  • Maple
    # with f as in A305566
    recs:= 0: count:= 0: m:= 0:
    Agenda:= heap[new]((s,t) -> s[2]>t[2], [[1],2]);
    while count < 34 do
      T:= heap[extract](Agenda);
      v:= f(T[2]);
      if v > m then
        count:= count+1;
        recs:= recs, v;
        m:= v;
      fi;
      L:= T[1];
      heap[insert]([[op(L),1],T[2]*ithprime(nops(L)+1)],Agenda);
      heap[insert]([L+[1,0$(nops(L)-1)], 2*T[2]],Agenda);
      for j in select(i -> L[i]
    				
Showing 1-5 of 5 results.