cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A084645 Hypotenuses for which there exists a unique integer-sided right triangle.

Original entry on oeis.org

5, 10, 13, 15, 17, 20, 26, 29, 30, 34, 35, 37, 39, 40, 41, 45, 51, 52, 53, 55, 58, 60, 61, 68, 70, 73, 74, 78, 80, 82, 87, 89, 90, 91, 95, 97, 101, 102, 104, 105, 106, 109, 110, 111, 113, 115, 116, 117, 119, 120, 122, 123, 135, 136, 137, 140, 143, 146, 148, 149
Offset: 1

Views

Author

Eric W. Weisstein, Jun 01 2003

Keywords

Comments

Numbers whose square is uniquely decomposable into the sum of two nonzero squares: these are those numbers with exactly one prime divisor of the form 4k+1 with multiplicity one. - Jean-Christophe Hervé, Nov 11 2013

Crossrefs

Cf. A004144 (0), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_] := {b, c} /. {ToRules[ Reduce[0 < b < c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[ Range[150], Length[r[#]] == 1 &] (* Jean-François Alcover, Oct 22 2012 *)
  • PARI
    is_a084645(n) = #qfbsolve(Qfb(1,0,1),n^2,3)==3 \\ Hugo Pfoertner, Sep 28 2024

Formula

Terms are obtained by the products A004144(k)*A002144(p) for k, p > 0, ordered by increasing values. - Jean-Christophe Hervé, Nov 12 2013
A046080(a(n)) = 1, A046109(a(n)) = 12. - Jean-Christophe Hervé, Dec 01 2013

A084647 Hypotenuses for which there exist exactly 3 distinct integer triangles.

Original entry on oeis.org

125, 250, 375, 500, 750, 875, 1000, 1125, 1375, 1500, 1750, 2000, 2197, 2250, 2375, 2625, 2750, 2875, 3000, 3375, 3500, 3875, 4000, 4125, 4394, 4500, 4750, 4913, 5250, 5375, 5500, 5750, 5875, 6000, 6125, 6591, 6750, 7000, 7125, 7375, 7750
Offset: 1

Views

Author

Eric W. Weisstein, Jun 01 2003

Keywords

Comments

Numbers whose square is decomposable in 3 different ways into the sum of two nonzero squares: these are those with exactly one prime divisor of the form 4k+1 with multiplicity three. - Jean-Christophe Hervé, Nov 11 2013

Examples

			a(1) = 125 = 5^3, and 125^2 = 100^2 + 75^2 = 117^2 + 44^2 = 120^2 + 35^2. - _Jean-Christophe Hervé_, Nov 11 2013
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    Clear[lst,f,n,i,k] f[n_]:=Module[{i=0,k=0},Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]],k++ ],{i,n-1,1,-1}]; k/2]; lst={}; Do[If[f[n]==3,AppendTo[lst,n]],{n,4*5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)

Formula

Terms are obtained by the products A004144(k)*A002144(p)^3 for k, p > 0, ordered by increasing values. - Jean-Christophe Hervé, Nov 12 2013

A084648 Hypotenuses for which there exist exactly 4 distinct integer triangles.

Original entry on oeis.org

65, 85, 130, 145, 170, 185, 195, 205, 221, 255, 260, 265, 290, 305, 340, 365, 370, 377, 390, 410, 435, 442, 445, 455, 481, 485, 493, 505, 510, 520, 530, 533, 545, 555, 565, 580, 585, 595, 610, 615, 625, 629, 663, 680, 685, 689, 697, 715, 730, 740, 745
Offset: 1

Views

Author

Eric W. Weisstein, Jun 01 2003

Keywords

Comments

Numbers whose square is decomposable in 4 different ways into the sum of two nonzero squares: these are those with exactly 2 distinct prime divisors of the form 4k+1, each with multiplicity one, or with only one prime divisor of this form with multiplicity 4. - Jean-Christophe Hervé, Nov 11 2013
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Examples

			a(1) = 65 = 5*13, and 65^2 = 52^2 + 39^2 = 56^2 + 33^2 = 60^2 + 25^2 = 63^2 + 16^2. - _Jean-Christophe Hervé_, Nov 11 2013
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    Clear[lst,f,n,i,k] f[n_]:=Module[{i=0,k=0},Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]],k++ ],{i,n-1,1,-1}]; k/2]; lst={}; Do[If[f[n]==4,AppendTo[lst,n]],{n,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)

A084649 Hypotenuses for which there exist exactly 5 distinct Pythagorean triangles.

Original entry on oeis.org

3125, 6250, 9375, 12500, 18750, 21875, 25000, 28125, 34375, 37500, 43750, 50000, 56250, 59375, 65625, 68750, 71875, 75000, 84375, 87500, 96875, 100000, 103125, 112500, 118750, 131250, 134375, 137500, 143750, 146875, 150000, 153125
Offset: 1

Views

Author

Eric W. Weisstein, Jun 01 2003

Keywords

Comments

Numbers whose square is decomposable in 5 different ways into the sum of two nonzero squares: these are those with exactly one prime divisor of the form 4k+1 with multiplicity 5. - Jean-Christophe Hervé, Nov 12 2013

Examples

			a(1) = 5^5, a(5) = 6*5^5, a(65) = 13^5. - _Jean-Christophe Hervé_, Nov 12 2013
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    Clear[lst,f,n,i,k] f[n_]:=Module[{i=0,k=0},Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]],k++ ],{i,n-1,1,-1}]; k/2]; lst={}; Do[If[f[n]==5,AppendTo[lst,n]],{n,3*6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)

Formula

Terms are obtained by the products A004144(k)*A002144(p)^5 for k, p > 0 ordered by increasing values. - Jean-Christophe Hervé, Nov 12 2013

A084646 Hypotenuses for which there exist exactly 2 distinct integer triangles.

Original entry on oeis.org

25, 50, 75, 100, 150, 169, 175, 200, 225, 275, 289, 300, 338, 350, 400, 450, 475, 507, 525, 550, 575, 578, 600, 675, 676, 700, 775, 800, 825, 841, 867, 900, 950, 1014, 1050, 1075, 1100, 1150, 1156, 1175, 1183, 1200, 1225, 1350, 1352, 1369, 1400
Offset: 1

Views

Author

Eric W. Weisstein, Jun 01 2003

Keywords

Comments

Numbers whose square is decomposable in 2 different ways into the sum of two nonzero squares: these are those with exactly one prime divisor of the form 4k+1 with multiplicity two. - Jean-Christophe Hervé, Nov 11 2013

Crossrefs

Cf. A004144 (0), A084645 (1), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    Clear[lst,f,n,i,k] f[n_]:=Module[{i=0,k=0},Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]],k++ ],{i,n-1,1,-1}]; k/2]; lst={}; Do[If[f[n]==2,AppendTo[lst,n]],{n,4*5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)

Formula

Terms are obtained by the products A004144(k)*A002144(p)^2 for k, p > 0, ordered by increasing values. - Jean-Christophe Hervé, Nov 12 2013
A046080(a(n)) = 2, A046109(a(n)) = 20. - Jean-Christophe Hervé, Dec 01 2013

A097102 Numbers n that are the hypotenuse of exactly 13 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 13 ways.

Original entry on oeis.org

1105, 1885, 2210, 2405, 2465, 2665, 3145, 3315, 3445, 3485, 3770, 3965, 4420, 4505, 4745, 4810, 4930, 5185, 5330, 5365, 5655, 5785, 5945, 6205, 6290, 6305, 6409, 6565, 6630, 6890, 6970, 7085, 7215, 7345, 7395, 7540, 7565, 7585, 7685, 7735, 7930, 7995
Offset: 1

Views

Author

James R. Buddenhagen, Sep 15 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Extensions

More terms from Ray Chandler, Sep 16 2004
Definition corrected by Zak Seidov, Feb 26 2008

A097101 Numbers n that are the hypotenuse of exactly 7 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 7 ways.

Original entry on oeis.org

325, 425, 650, 725, 845, 850, 925, 975, 1025, 1275, 1300, 1325, 1445, 1450, 1525, 1690, 1700, 1825, 1850, 1950, 2050, 2175, 2225, 2275, 2425, 2525, 2535, 2550, 2600, 2650, 2725, 2775, 2825, 2873, 2890, 2900, 2925, 2975
Offset: 1

Views

Author

James R. Buddenhagen, Sep 15 2004

Keywords

Comments

Comment from R. J. Mathar, Feb 26 2008, edited by Zak Seidov May 12 2008: (Start)
There are nonsquares x which can be written as a sum of 2 nonzero squares in exactly 7 different ways and which are by definition not in this sequence.
203125 = (125*sqrt(13))^2 is the first example: 203125 = 625 + 202500 = 10404 + 192721 = 18225 + 184900= 22500 + 180625= 62500 + 140625= 69169 + 133956= 84100 + 119025.
The second and third examples are 265625 = (125*sqrt(17))^2 and 406250=(125*sqrt(26))^2. (End)
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Examples

			Example supplied by _R. J. Mathar_, Feb 26 2008:
The smallest number that can be written as a sum of two nonzero squares in 7 different ways is 105625 = 325^2:
1296 + 104329 = 105625 = 325^2
6400 + 99225 = 105625 = 325^2
8281 + 97344 = 105625 = 325^2
15625 + 90000 = 105625 = 325^2
27225 + 78400 = 105625 = 325^2
38025 + 67600 = 105625 = 325^2
41616 + 64009 = 105625 = 325^2.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b,c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Equals {n: A025426(n^2)=7}.

Extensions

Definition and comments corrected by Zak Seidov, Feb 26 2008, May 12 2008

A097103 Numbers n that are the hypotenuse of exactly 22 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 22 ways.

Original entry on oeis.org

5525, 9425, 11050, 12025, 12325, 13325, 14365, 15725, 16575, 17225, 17425, 18785, 18850, 19825, 22100, 22525, 23725, 24050, 24505, 24650, 25925, 26650, 26825, 28275, 28730, 28925, 29725, 31025, 31265, 31450, 31525, 32825, 33150, 34450
Offset: 1

Views

Author

James R. Buddenhagen, Sep 15 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b,c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Extensions

More terms from Ray Chandler, Sep 16 2004
Definition corrected by Zak Seidov, Feb 26 2008

A097219 Numbers n that are the hypotenuse of exactly 6 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 6 ways.

Original entry on oeis.org

15625, 31250, 46875, 62500, 93750, 109375, 125000, 140625, 171875, 187500, 218750, 250000, 281250, 296875, 328125, 343750, 359375, 375000, 421875, 437500, 484375, 500000, 515625, 562500, 593750, 656250, 671875, 687500, 718750, 734375
Offset: 1

Views

Author

James R. Buddenhagen, Sep 17 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Extensions

More terms from Ray Chandler, Sep 18 2004

A097225 Numbers n that are the hypotenuse of exactly 10 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 10 ways.

Original entry on oeis.org

1625, 2125, 3250, 3625, 4250, 4625, 4875, 5125, 6375, 6500, 6625, 7250, 7625, 8500, 9125, 9250, 9750, 10250, 10875, 10985, 11125, 11375, 12125, 12625, 12750, 13000, 13250, 13625, 13875, 14125, 14500, 14625, 14875, 15250, 15375, 17000, 17125
Offset: 1

Views

Author

James R. Buddenhagen, Sep 17 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[n_] := Reduce[0 < x <= y && n^2 == x^2 + y^2, {x, y}, Integers]; Reap[For[n = 5, n <= 20000, n++, rn = r[n]; If[rn =!= False, If[Length[r[n]] == 10, Print[n]; Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Nov 15 2016 *)
Showing 1-10 of 24 results. Next